![北师大版初二数学上册(秋季班)讲义 第4讲 平面直角坐标系--尖子班(教师版)第1页](http://img-preview.51jiaoxi.com/2/3/14079453/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![北师大版初二数学上册(秋季班)讲义 第4讲 平面直角坐标系--尖子班(教师版)第2页](http://img-preview.51jiaoxi.com/2/3/14079453/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![北师大版初二数学上册(秋季班)讲义 第4讲 平面直角坐标系--尖子班(教师版)第3页](http://img-preview.51jiaoxi.com/2/3/14079453/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![北师大版初二数学上册(秋季班)讲义 第4讲 平面直角坐标系--尖子班(学生版)第1页](http://img-preview.51jiaoxi.com/2/3/14079453/1/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![北师大版初二数学上册(秋季班)讲义 第4讲 平面直角坐标系--尖子班(学生版)第2页](http://img-preview.51jiaoxi.com/2/3/14079453/1/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![北师大版初二数学上册(秋季班)讲义 第4讲 平面直角坐标系--尖子班(学生版)第3页](http://img-preview.51jiaoxi.com/2/3/14079453/1/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:初二数学北师大版上册(秋季班)讲义
数学八年级上册2 平面直角坐标系达标测试
展开
这是一份数学八年级上册2 平面直角坐标系达标测试,文件包含北师大版初二数学上册秋季班讲义第4讲平面直角坐标系--尖子班教师版docx、北师大版初二数学上册秋季班讲义第4讲平面直角坐标系--尖子班学生版docx等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。
第4讲 平面直角坐标系
知识点1 有序数对
像“9排7号”“第1列第5排”这样含有两个数的表达方式来表示一个确定的位置,其中两个数各自表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).
注意:当时,和是不同的两个有序数对.
【典例】
1.如下图所示,B表示为(4,5),B左侧第二个人的位置是 ( )
A. (2,5) B. (5,2) C. (2,2) D. (5,5)
【答案】A.
【解析】解:B的位置是四列五行,表示为(4,5),列数在前,行数在后,
B左侧第二个人的位置是二列五行,表示为(2,5)
故选:A
2.如下图所示,从2街4巷到4街2巷,走最短的路线,共有几种走法,分别为?
【答案】略
【解析】解:2街4巷为点(2,4),4街2巷为点(4,2),如下图所示:
从2街4巷到4街2巷,走最短的路线
从点(2,4)到点(4,2)有6种走法,分别为
1、(2,4)→(3,4)→(4,4)→(4,3)→(4,2);
2、(2,4)→(3,4)→(3,3)→(4,3)→(4,2);
3、(2,4)→(3,4)→(3,3)→(3,2)→(4,2);
4、(2,4)→(2,3)→(3,3)→(4,3)→(4,2);
5、(2,4)→(2,3)→(3,3)→(3,2)→(4,2);
6、(2,4)→(2,3)→(2,2)→(3,2)→(4,2).
【方法总结】
第一题解题步骤:(1)明确本题是由行数和列数两个量来表示一个确定的位置;(2)由已知点确定行与列的前后位置:列数在前,行数在后;(3)用有序数对表示所求各点的位置.
第二题,先明确2街4巷与4街2巷的具体位置为点(2,4)和点(4,2);理解题意,因为“走最短的路线”,所以只能向右或向下走,否则就不是最短路线.由此一一找出符合条件的线段.
【随堂练习】
1.(2018春•嘉祥县期中)雷达二维平面定位的主要原理是:测量目标的两个信息﹣距离和角度,目标的表示方法为(m,α),其中,m表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为A(5,30°),目标C的位置表示为C(3,300°).用这种方法表示目标B的位置,正确的是( )
A.(﹣4,150°) B.(4,150°) C.(﹣2,150°) D.(2,150°)
【解答】解:∵A(5,30°),C(3,300°),
∴B(4,150°).
故选:B.
2.(2018•金华)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是( )
A.(5,30) B.(8,10) C.(9,10) D.(10,10)
【解答】解:如图,
过点C作CD⊥y轴于D,
∴BD=5,CD=50÷2﹣16=9,
OA=OD﹣AD=40﹣30=10,
∴P(9,10);
故选:C.
3.(2018•北京)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:
①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);
②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);
③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);
④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).
上述结论中,所有正确结论的序号是( )
A.①②③ B.②③④ C.①④ D.①②③④
【解答】解:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6),此结论正确;
②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12),此结论正确;
③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣5,﹣2)时,表示左安门的点的坐标为(11,﹣11),此结论正确;
④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5),此结论正确.
故选:D.
知识点2 各象限内点的坐标特征
1、平面直角坐标系
在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系.水平的数轴叫做横轴或轴,习惯上取向右方向为正方向;竖直的数轴叫做纵轴或轴,取向上的方向为正方向;两坐标轴的交点为平面直角坐标系的原点.
2、象限
建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成Ⅰ,Ⅱ,Ⅲ,Ⅳ四个部分,每个部分称为象限,分别叫做第一象限,第二象限,第三象限和第四象限.坐标轴上的点不属于任何象限.
3、点的坐标
对于坐标平面内的一点,过点分别向轴、轴作垂线,垂足在轴、轴上对应的数、分别叫做点的横坐标和纵坐标,有序实数对叫做点的坐标,记作.如下图为A(4,5)点坐标.
坐标平面内的点与有序实数对是一一对应的.
注意:横坐标写在纵坐标前面,中间用“,”号隔开,再用小括号括起来.
4、各象限内点的坐标特征
点在第一象限;
点在第二象限;
点在第三象限;
点在第四象限.
【典例】
1.在平面直角坐标系中,到x轴的距离等于2个单位长度,且到y轴的距离等于3个单位长度的点有____________.
【答案】(3,2)、(﹣3,2)、(﹣3,﹣2)、(3,﹣2)
【解析】解:设该点坐标为(x,y)
∵满足条件的点到x轴的距离等于2个单位长度,
∴该点纵坐标的绝对值等于2,即,
∵到y轴的距离等于3个单位长度,
∴该点横坐标的绝对值等于3,即
∴满足条件的点一共有4个,分别是:
(3,2)、(﹣3,2)、(﹣3,﹣2)、(3,﹣2),
2.已知点M(a,b),且a•b>0,a+b<0,则点M在第______象限.
【答案】三
【解析】解:∵a•b>0,
∴a、b同号
∵a+b<0,
∴a<0,b<0,
∴点M(a,b)在第三象限.
故答案为:三
【方法总结】
第一题考查点的坐标以及分类讨论,点到x轴的距离等于点纵坐标的绝度值,点到y轴的距离等于点横坐标的绝对值.
第二题考查判断点的横、纵坐标的符号,由于a•b>0,则a、b同号,而a+b<0,可得a<0,b<0.同理当 a•b>0,a+b>0时,可得a>0,b>0.
四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).
【随堂练习】
1.(2018•扬州)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是( )
A.(3,﹣4) B.(4,﹣3) C.(﹣4,3) D.(﹣3,4)
【解答】解:由题意,得
x=﹣4,y=3,
即M点的坐标是(﹣4,3),
故选:C.
2.(2018•沈河区一模)在平面直角坐标系内,点P(a,a+3)的位置一定不在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【解答】解:当a为正数的时候,a+3一定为正数,所以点P可能在第一象限,一定不在第四象限,
当a为负数的时候,a+3可能为正数,也可能为负数,所以点P可能在第二象限,也可能在第三象限,
故选:D.
3.(2018•深圳模拟)点P(x﹣1,x+1)不可能在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【解答】解:本题可以转化为不等式组的问题,看下列不等式组哪个无解,
(1),解得x>1,故x﹣1>0,x+1>0,点在第一象限;
(2),解得x<﹣1,故x﹣1<0,x+1<0,点在第三象限;
(3),无解;
(4),解得﹣1<x<1,故x﹣1<0,x+1>0,点在第二象限.
故选:D.
4.(2018•雨花区校级一模)若点A(﹣6,n)在x轴上,则点B(n﹣1,n+1)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【解答】解:∵点A(﹣6,n)在x轴上,
∴n=0,
∴点B(n﹣1,n+1)为:(﹣1,1),
则点B在第二象限.
故选:B.
知识点3 坐标轴及坐标轴的角平分线上点的坐标特征
1、坐标轴上点的坐标特征:
点在轴上,为任意实数;
点在轴上,为任意实数;
点即在轴上,又在轴上,即点的坐标为.
2、两坐标轴夹角平分线上点的坐标特征:
点在第一、三象限夹角的角平分线上;
点在第二、四象限夹角的角平分线上.
【典例】
1.如果点P(a,b)在x轴上,那么点Q(ab,﹣1)在( )
A. y轴的正半轴上 B. y轴的负半轴上
C. x轴的正半轴上 D. x轴的负半轴上
【答案】B.
【解析】解:∵点P(a,b)在x轴上,
∴b=0,
∴ab=0,
∴点Q(ab,﹣1)在y轴负半轴上.
故选:B
2.已知点P的坐标(2﹣a,3a+6),且点P在二四象限角平分线上,则点P的坐标是_________.
【答案】(6,﹣6)
【解析】解:∵点P的坐标(2﹣a,3a+6),且点P在二四象限角平分线上,
∴(2﹣a)+(3a+6)=0,
解得a=﹣4,
∴横坐标:2﹣a=2﹣(﹣4)=6,
∴点P的坐标为(6,﹣6).
故答案为:(6,﹣6).
【方法总结】
第一题主要考查了点在坐标轴上时点的坐标特点:点在x轴上时,纵坐标为0;点在y轴上时,横坐标为0.
第二题考查坐标轴夹角平分线上点的坐标特征,第二、四象限角平分线上的点的横坐标与纵坐标互为相反数.
【随堂练习】
1.(2018•平南县二模)若点N在第一、三象限的角平分线上,且点N到y轴的距离为2,则点N的坐标是( )
A.(2,2) B.(﹣2,﹣2) C.(2,2)或(﹣2,﹣2) D.(﹣2,2)或(2,﹣2)
【解答】解:∵点N在第一、三象限的角平分线上,
∴点N到y轴的距离也为2,
当点N在第一象限时,点N的坐标为(2,2);
点N在第三象限时,点N的坐标为(﹣2,﹣2).
所以,点N的坐标为(2,2)或(﹣2,﹣2).
故选:C.
2.(2018•滨湖区二模)已知点A(m2﹣2,5m+4)在第一象限角平分线上,则m的值为 ( )
A.6 B.﹣1 C.2或3 D.﹣1或6
【解答】解:∵点A(m2﹣2,5m+4)在第一象限角平分线上,
∴m2﹣2=5m+4,
∴m2﹣5m﹣6=0,
解得m1=﹣1,m2=6,
当m=﹣1时,m2﹣2=﹣1,
点A(﹣1,﹣1)在第三象限,不符合题意,
所以,m的值为6.
故选:A.
3.(2018春•迁安市期末)已知点P(2﹣a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是( )
A.(3,3) B.(6,﹣6) C.(3,﹣3) D.(3,3)或(6,﹣6)
【解答】解:∵点P(2﹣a,3a+6)到两坐标轴的距离相等,
∴|2﹣a|=|3a+6|,
∴2﹣a=3a+6或2﹣a=﹣(3a+6),
解得a=﹣1或a=﹣4,
当a=﹣1时,2﹣a=2﹣(﹣1)=2+1=3,
当a=﹣4时,2﹣a=2﹣(﹣4)=2+4=6,
∴点P的坐标为(3,3)或(6,﹣6).
故选:D.
知识点4 规律性--点的坐标
在平面直角坐标系内找点的规律:
1、尽可能多的找出点的坐标,已知的点越多,越好找规律;
2、点的横坐标和纵坐标的规律一般不同,需要分别考虑;
3、要注意所求点的横、纵坐标的正负.
【典例】
1.在平面直角坐标系xOy中,点A从原点出发沿x轴正向移动1个单位长度到A1,逆时针旋转90°后前进2个单位长度到达A2,逆时针旋转90°后前进3个单位长度到达A3,…,逆时针旋转90°后前进2018个单位长度到达点A2018,则点A2018的坐标为________.
【答案】(1009,1010)
【解析】解:如图所示:
∵A1(1,0),A2(1,2),A3(﹣2,2),A4(﹣2,﹣2),
A5(3,﹣2),A6(3,4),A7(﹣4,4),A8(﹣4,﹣4),
A9(5,﹣4),A10(5,6),
A11(﹣6,6)…
观察图形规律,一三象限内是偶次数点,其中第三象限的点次数是4的整数倍,第一象限的点次数除以4余2;
因为2018÷4=504……2,所以点A2018在第一象限;
观察第一象限内点的坐标规律:A2(1,2),A6(3,4),A10(5,6)……,可得A2018点的坐标为(1009,1010).
故答案为:(1009,1010).
【方法总结】
此题主要考查了点的变化规律,根据题意得出各点坐标,然后分析每个象限内点的坐标规律,即可判断点A2018在第一象限;再观察第一象限内的点A2(1,2),A6(3,4),A10(5,6)的规律,发现第一象限内的点An的横坐标为,纵坐标为,所以第一象限内点A的坐标为,所以点A2018点的坐标为(1009,1010).
【随堂练习】
1.(2018春•曲阜市期末)如图,在平面直角坐标系xOy中,点P(1,0).点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位至点P3,第4次向右跳动3个单位至点P4,第5次又向上跳动1个单位至点P5,第6次向左跳动4个单位至点P6,….照此规律,点P第100次跳动至点P100的坐标是( )
A.(﹣26,50) B.(﹣25,50) C.(26,50) D.(25,50)
【解答】解:经过观察可得:P1和P2的纵坐标均为1,P3和P4的纵坐标均为2,P5和P6的纵坐标均为3,因此可以推知P99和P100的纵坐标均为100÷2=50;
其中4的倍数的跳动都在y轴的右侧,那么第100次跳动得到的横坐标也在y轴右侧.P1横坐标为1,P4横坐标为2,P8横坐标为3,依此类推可得到:Pn的横坐标为n÷4+1(n是4的倍数).
故点P100的横坐标为:100÷4+1=26,纵坐标为:100÷2=50,点P第100次跳动至点P100的坐标是(26,50).
故选:C.
2.(2018春•新罗区期末)如图,在直角坐标系中,A(1,3),B(2,0),第一次将△AOB变换成△OA1B1,A1(2,3),B1(4,0);第二次将△OA1B1变换成△OA2B2,A2(4,3),B2(8,0),第三次将△OA2B2变换成△OA3B3,……,则B2018的横坐标为( )
A.22016 B.22017 C.22018 D.22019
【解答】解:B2018的横坐标是(22019,0),
故选:D.
3.如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(﹣1,1),第四次向右跳动5个单位至点A4(3,2),…,依此规律跳动下去,点A第10次跳动至点A10的坐标是______,点A第100次跳动至点A100的坐标是_____.
【解答】解:由图象可知,点A每跳两次,纵坐标增加1,A2、A4、A6、A8…各点坐标依次为(2,1)、(3,2)、(4,3)、(5,4)…
则A2n横坐标为:n+1,纵坐标为n
则A10坐标为(6,5)
A100坐标为(51,50)
故答案为:(6,5),(51,50)
综合运用
1.如果用(7,3)表示七年级三班,则(9,6)表示____________.
【答案】九年级六班
【解析】解:根据(7,3)表示七年级三班,即第1个数表示年级,第2个数表示班级,所以(9,6)表示九年级六班.
2.如下图所示,A表示三经路与一纬路的十字路口,B表示一经路与三纬路的十字路口,如果用(3,1)→(3,2)→(3,3)→(2,3)→(1,3)表示A到B的一条路线,用同样的方式写出另外一条由A到B的一条路线:(3,1)→(_______)→(_______)→(_______) → (1,3).(答案不唯一)
【答案】(2,1);(2,2);(2,3)
【解析】解:答案不唯一.
3.已知点A(3a,2b)在x轴上方,y轴的左边,则点A到x轴、y轴的距离分别为____________.
【答案】2b, ﹣3a
【解析】解:∵点A(3a,2b)在x轴上方,
∴点A的纵坐标大于0,得到2b>0,
∴点A到x轴的距离是2b;
∵点A(3a,2b)在y轴的左边,
∴点A的横坐标小于0,即3a<0,
∴点A到y轴的距离是﹣3a
所以点A到x轴的距离是2b,到y轴的距离是﹣3a
故答案为:2b, ﹣3a
4.已知点(a,b)在笫二象限.则点(ab,a﹣b)在第_________象限.
【答案】三
【解析】解:∵点(a,b)在笫二象限,
∴a<0,b>0,
∴ab<0,a﹣b<0,
∴点(ab,a﹣b)在第三象限.
故答案为:三
5.在平面直角坐标系中,横坐标、纵坐标都是整数的点称为整点,观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测出,从里向外第41个正方形(实线)四条边上的整点个数共有_______个.
【答案】164
【解析】解:设从里向外第n个正方形四条边上的整点个数共有an(n为正整数)个,
观察,发现:a1=4,a2=8,a3=12,a4=16,…,
∴an=4n.
当n=41时,a41=41×4=164.
所以从里向外第41个正方形四条边上的整点个数共有164个
故答案为:164.
6. 如图,在直角坐标系中,一只蚂蚁从点P(0,1)出发,沿着图示折线方向移动,第一次到达点(1,1),第二次达到点(1,0),第三次达到点(1,﹣1),第四次达到点(2,﹣1),…,按照这样的规律,第2018次到达点的坐标应为_______.
【答案】(673,0)
【解析】解:设第n次到达的点为Pn,
观察,发现规律:P0(0,1),P1(1,1),P2(1,0),P3(1,﹣1),P4(2,﹣1),P5(2,0),P6(2,1),…,
蚂蚁移动6次是一个循环,每个循环向右移动2个单位
∵2018÷6=336……2
∴点P2018是由点P2(1,0)向右经过336个循环后得到的
∴点P2018的坐标为(2×336+1,0)即(673,0).
故答案为:(673,0).
7.请写出点A,B,C,D,的坐标.
【答案】略
【解析】解:A(3,2);B(﹣3,4);C(﹣4,﹣3);D(3,﹣3).
8.已知点P的坐标为(2m﹣1,m+7).
(1)若点P在x轴上,试求m的值;
(2)若点P在二四象限的角平分线上,求m的值;
【答案】略
【解析】解:(1)∵点P在x轴上,
∵m+7=0,
m=﹣7;
(2)∵点P在二、四象限的角平分线上,
∴2m﹣1与m+7互为相反数
即:2m﹣1+m+7=0,
∴m=﹣2;
9.已知:P(4x,x﹣3)在平面直角坐标系中.
(1)若点P在第三象限的角平分线上,求x的值;
(2)若点P在第四象限,且到两坐标轴的距离之和为9,求x的值.
【答案】略
【解析】解:(1)∵点P在第三象限的角平分线上
∴4x与 x﹣3相等,即4x=x﹣3,
解得x=﹣1
∴点P在第三象限的角平分线上时,x=﹣1.
(2)∵点P在第四象限
∴4x>0,x﹣3
相关试卷
这是一份初中数学人教版八年级上册第十四章 整式的乘法与因式分解14.3 因式分解14.3.2 公式法当堂检测题,文件包含人教版初二数学上册秋季班讲义第12讲因式分解二--尖子班教师版docx、人教版初二数学上册秋季班讲义第12讲因式分解二--尖子班学生版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
这是一份数学人教版第十四章 整式的乘法与因式分解14.3 因式分解14.3.1 提公因式法当堂检测题,文件包含人教版初二数学上册秋季班讲义第11讲因式分解一--尖子班教师版docx、人教版初二数学上册秋季班讲义第11讲因式分解一--尖子班学生版docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。
这是一份初中数学人教版八年级上册12.1 全等三角形课后复习题,文件包含人教版初二数学上册秋季班讲义第4讲全等辅助线二--尖子班教师版docx、人教版初二数学上册秋季班讲义第4讲全等辅助线二--尖子班学生版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)