2022-2023学年河南省平顶山市郏县六年级(上)期末数学试卷
展开
这是一份2022-2023学年河南省平顶山市郏县六年级(上)期末数学试卷,共18页。试卷主要包含了细心填空,选择,计算,操作与实践,解决问题等内容,欢迎下载使用。
2022-2023学年河南省平顶山市郏县六年级(上)期末数学试卷
一、细心填空。(每空1分,共28分)
1.(5分)9÷ =0.6= :35== %= 折。
2.(3分)
0.25立方米= 升
升= 毫升
40分= 时
3.(4分)24千克的是 千克; 升的是6升; 千克比60千克多;60千克比 千克少20%。
4.(2分)把:0.75化成最简整数比是 ,比值是 。
5.(2分)在、3.149、π、315%这些数中,最大的数是 ,最小的数是 。
6.(2分)一个三角形的三个内角度数的比是3:1:2,而其中最小的一个角是 °,则按角的大小分,这是一个 三角形。
7.(1分)六(2)班有50人,其中有47人接种了新冠疫苗 %。
8.(2分)王叔叔因一项科技发明,获得了5000元奖金。按规定应缴纳20%的个人所得税,王叔叔实际获得奖金 元;他把实得奖金存入银行,定期三年,到期他应得到本金和利息一共 元。
9.(2分)李叔叔把960毫升果汁倒入6个小杯和2个大杯,正好都倒满。已知小杯的容量是大杯的,小杯的容量是 毫升,大杯的容量是 毫升。
10.(2分)李东从甲地步行到乙地,行了全程的,正好行了480米 米,再行 米到达全程的中点。
11.(2分)疫情网课中,王老师通过微信小管家程序发布了一道思考题,在全班同学提交答案后,王老师表扬了做对的44位同学。这个班有学生 人,这一题回答错误的有 人。
12.(1分)一个长方体,如果高减少2厘米,就变成一个正方体。这时表面积比原来减少64平方厘米。原来长方体的体积是 立方厘米。
二、选择。(将正确答案的序号填在括号内,共10分)
13.(2分)下面不是正方体的展开图的是( )
A. B.
C. D.
14.(2分)一个比的前项是5,如果前项增加10,要使比值不变( )
A.增加10 B.乘3 C.乘2
15.(2分)某产品说明书上标注包装尺寸为590×505×1400(mm),它们分别表示这个长方体的长、宽、高,根据这组数据( )
A.一台电视机 B.一台冰箱 C.一部手机
16.(2分)有一道古题:“今有鸡兔同笼,上有三十五头,下有九十四足( )
A.鸡14只,兔21只 B.鸡21只,兔14只
C.鸡23只,兔12只 D.鸡12只,兔23只
17.(2分)下面说法中正确的有( )句。
①树叶长和宽的比值越大,树叶就越狭长。
②男生比女生多,则女生比男生少。
③甲学校的近视率是35%,乙学校的近视率是40%,说明乙学校近视的人数一定比甲学校多。
④一个长方形的长和宽分别增加,新长方形的面积是原来长方形的。
A.1 B.2 C.3
三、计算。(25分)
18.(4分)直接写出得数。
8×=
×=
+=
1÷7+=
0÷=
+=
2÷50%=
×÷×=
19.(12分)计算下面各题,能简便的要简便。
÷[(+)×]
(﹣+)×48
÷4+×
3﹣÷﹣
20.(9分)解方程。
1﹣75%x=0.4
80%x+x=0.72
x÷=
四、操作与实践。(8分)
21.(4分)如图是长方体表面展开图的一部分。(每个小方格表示1平方厘米)
(1)请在虚线①、②的旁边将长方体的展开图补充完整。
(2)这个长方体的表面积是 平方厘米,体积是 立方厘米。
22.(4分)如图中每个小方格的边长表示1厘米。
(1)先在图中画一个面积是12平方厘米、底与高的比是3:2的三角形。
(2)在所画的三角形中画一条线段,把三角形分成两部分,使得两部分面积比是2:1。
五、解决问题。(29分)
23.(8分)学校新建一个长方体游泳池,从里面量底面长50米、宽25米、高2米。
(1)在游泳池的底面和侧面贴一层瓷砖,如果每平方米瓷砖的价格是40元,那么一共需要多少元?
(2)如果每立方米的水重1吨,那么在游泳池中注入多少吨水,才能使水深1.6米?
24.(5分)学校器材室要购买30个足球。彭老师去了两个体育用品店咨询,足球的单价都是50元/个,但优惠方式不同。A店是打九折出售,去哪个店购买比较划算?
25.(5分)随着快递行业的迅速发展,物流自动化已是大趋势。一种智能物流自动分拣系统小时可以分拣,照这样计算,该系统分拣36万件货物需要多少小时?
26.(6分)张老师从上海乘飞机到北京,票价打八折后是960元。航空公司规定:每位乘客,携带行李超过20千克的部分
(1)上海到北京飞机票的原价是多少元?
(2)张老师带了26千克行李,应付行李费多少元?
27.(5分)图书馆原有一些学生在看书,其中女生人数占60%,从图书馆走出9名女生后。原来图书馆里有女生多少人?
2022-2023学年河南省平顶山市郏县六年级(上)期末数学试卷
参考答案与试题解析
一、细心填空。(每空1分,共28分)
1.【分析】把0.6化成分数并化简是,根据分数的基本性质,分子、分母都乘4就是;根据分数与除法的关系,=3÷5,再根据商不变的性质被除数、除数都乘3就是9÷15;根据比与分数的关系,=3:5,再根据比的基本性质比的前、后项都乘7就是21:35;把0.6的小数点向右移动两位添上百分号就是60%;根据折扣的意义,60%就是六折。
【解答】解:9÷15=0.6=21:35==60%=六折。
故答案为:15,21,60,六。
【点评】此题主要是考查除法、小数、分数、百分数、比、折扣之间的关系及转化。利用它们之间的关系和性质进行转化即可。
2.【分析】1立方米=1000立方分米=1000升,1立方分米=1升=1000立方厘米,1时=60秒分,利用单位之间的换算的方法:大单位换算成小单位要乘它们之间的进率;小单位换算成大单位要除以它们之间的进率,据此解答。
【解答】解:
0.25立方米=250升
升=600毫升
40分=时
故答案为:250,600,。
【点评】此题考查名数的换算,把高级单位的名数换算成低级单位的名数,就乘单位间的进率,把低级单位的名数换算成高级单位的名数,就除以单位间的进率。
3.【分析】求24千克的是多少千克,就是求24乘的积;求多少升的是6升,就是求6除以的商;求多少千克比60千克多,就是求60乘(1+)的积;求60千克比多少千克少20%,就是求60除以(1﹣20%)的商,据此解答。
【解答】解:24×=18(千克)
8=4(升)
60×(1+)
=60×
=80(千克)
60÷(8﹣20%)
=60÷80%
=75(千克)
答:24千克的是18千克是6升;60千克比75千克少20%。
故答案为:18;9;80。
【点评】求一个数的几分之几是多少,用乘法计算;已知一个数的几分之几是多少,求这个数,用除法计算;求比一个数多(少)几分之几的数是多少,用乘法计算;已知比一个数多(少)几分之几的数是多少,求这个数,用除法计算。
4.【分析】(1)根据比的基本性质作答,即比的前项和后项同时乘一个数或除以一个数(0除外)比值不变;
(2)求比值,用比的前项除以后项即可。
【解答】解:(1):2.75
=(×12):(2.75×12)
=8:9
(2):0.75
=÷0.75
=
故答案为:8:3,。
【点评】此题主要考查了化简比和求比值的方法,另外还要注意化简比的结果是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果是一个商,可以是整数、小数或分数。
5.【分析】首先把、315%化成小数,再求出π的近似值,然后再根据小数的大小比较方法,先看它们的整数部分,整数部分大的那个数大;如果整数部分相同,十分位上的数大的那个数大;如果十分位上的数也相同,百分位上的数大的那个数大,解答即可。
【解答】解:≈3.2857
π≈3.1416
315%=3.15
因为3.2857>4.15>3.149>3.1416
所以在、3.149、π,最大的数。
故答案为:,π。
【点评】此题考查了分数、百分数、小数的大小比较,同时还考查了分数、百分数、小数的互化。
6.【分析】根据三角形内角和定理,三角形三个内角之和是180°,把180°平均分成(3+1+2)份,先用除法求出1份的度数,即这个三角形最小角的度数,再用乘法求出3份的度数,即这个三角形最大角的度数,根据这个三角形最大角的度数即可对这个三角形按角分类。
【解答】解:180°÷(3+1+5)
=180°÷6
=30°
30°×3=90°
答:最小的一个角是30°,则按角的大小分。
故答案为:30,直角。
【点评】此题考查的知识点:三角形内角和定理、按比例分配问题、三角形的(按角)分类。
7.【分析】根据题意可知:接种率=接种人数÷全班人数×100%,代入数值解答即可。
【解答】解:47÷50×100%=94%
答:接种率是94%。
故答案为:94。
【点评】本题考查了百分率应用题,解答本题的关键是熟知公式:接种率=接种人数÷全班人数×100%。
8.【分析】个人所得税=奖金×税率,列出算式求出个人所得税,实际奖金=5000﹣个人所得税。把实际奖金当作本金,根据关系式:本息=本金+本金×利率×存期,由此代入数据,即可求出。
【解答】解:5000×(1﹣20%)
=5000×80%
=4000(元)
4000+4000×2.75%×6
=4000+12000×2.75%
=4000+330
=4330(元)
答:王叔叔实际获得奖金4000元;到期他应得到本金和利息一共4330元。
故答案为:4000,4330。
【点评】这种类型属于利息问题,有固定的计算方法,本息=本金+本金×利率×存期,找清数据,代入公式计算即可。
9.【分析】已知小杯的容量是大杯的,也就是说倒满3个小杯相当于倒满一大杯,倒满6个小杯相当于倒满2个大杯,所以李叔叔把960毫升果汁倒入6个小杯和2个大杯,正好都倒满,相当于把960毫升倒满4个大杯,据此列式解答即可。
【解答】解:因为小杯的容量是大杯的,所以倒满5个小杯相当于倒满2个大杯。
960÷(2+2)
=960÷4
240(毫升)
240×=80(毫升)
答:小杯的容量是80毫升,大杯的容量是240毫升。
故答案为:80,240。
【点评】此题考查了简单的等量代换问题,用一个量代替另一个量是解决此类问题的关键。
10.【分析】把甲地到乙地的全程看作单位“1”,根据分数除法的意义,用480米除以,就是从甲地到乙地的全程;根据分数乘法的意义,用全程乘,再减已行的480米,据此解答。
【解答】解:480÷=1200(米)
1200×﹣480
=600﹣480
=120(米)
答:全程有1200米,再行120米到达全程的中点。
故答案为:1200,120。
【点评】已知一个数的几分之几是多少,求这个数,用已知数除以它所对应的分率;求一个数的几分之几是多少,用这个数乘分率。
11.【分析】运用表扬的人数除以正确率即可得到全班人数,总人数减去做对的人数即可得到错误人数。
【解答】解:44÷80%
=44÷0.8
=55(人)
55﹣44=11(人)
答:这个班有学生55人,这一题回答错误的有11人。
故答案为:55,11。
【点评】本题考查了百分数的除法的应用,注意表扬的都是答题正确的。
12.【分析】根据高减少2厘米,就变成一个正方体可知,这个正方体比原长方体表面积减少的4个面是相同的,根据已知表面积减少56平方厘米,56÷4÷2=7(厘米),求出减少面的宽(长方体的底面边长),也就是剩下的正方体的棱长,原来长方体的高比底面边长多2厘米,据此可以求出长方体的高,根据长方体的体积公式:V=abh,把数据代入公式解答。
【解答】解:64÷4÷2
=16÷7
=8(厘米)
8×8×(8+2)
=64×10
=640(立方厘米)
答:原来长方体的体积是640立方厘米。
故答案为:640。
【点评】此题主要考查长方体的表面积公式、体积公式的灵活运用,关键是熟记公式,重点是求出长方体的底面边长和原来的高。
二、选择。(将正确答案的序号填在括号内,共10分)
13.【分析】根据正方体展开图的11种特征,即可确定哪个图形是正方体展开图,哪个图形不是正方体展开图。
【解答】解:A、是正方体展开图的“1﹣4﹣3”型;
B、是正方体展开图的“2﹣2﹣3”型;
C、不是正方体展开图;
D、是正方体展开图的“1﹣3﹣3”型。
故选:C。
【点评】本题主要是考查正方体展开图的特征,正方体展开图有11种特征,分四种类型,即:第一种:“1﹣4﹣1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2﹣2﹣2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3﹣3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1﹣3﹣2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形。
14.【分析】一个比的前项是5,如果前项增加10,看相当于前项乘积,比的前项和后项同时乘或除以相同的数(0除外),比值不变。
【解答】解:一个比的前项是5,如果前项增加10,15÷5=6,要使比值不变。
故选:B。
【点评】熟练掌握比的基本性质是解题的关键。
15.【分析】这个长方体的高是1400毫米=1.4米,长590毫米=0.59米,宽505毫米=0.505米,所以它可能是一台冰箱,据此解答即可。
【解答】解:这个长方体的高是1400毫米=1.4米,长590毫米=3.59米,所以它可能是一台冰箱。
故选:B。
【点评】先把毫米化为米,然后联系生活实际,想象一下就可以得出结论。
16.【分析】假设都是鸡,则足数为(35×2)条,实际有94条足,是因为每只兔比鸡多(4﹣2)只足;所以兔的只数为(94﹣35×2)÷(4﹣2),然后进一步解答即可。
【解答】解:(94﹣35×2)÷(4﹣3)
=(94﹣70)÷2
=24÷2
=12(只)
35﹣12=23(只)
答:鸡有23只,兔有12只。
故选:C。
【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答。
17.【分析】①用比的前项除以后项,所得的商即为比值,比值越大,长和宽相差就越大,表示树叶就越狭长。
②把女生人数看作整体“1”,则男生人数为(1+),再求女生比男生少几分之几。
③不一定,还要看每个学校的总人数,总人数相等,近视人数就相等,总人数多的学校,近视人数也多,反之,近视的人数则少,只知道近视率,不知道两学校的总人数,不能确定两校的近视人数,故无法比较。
④根据长方形的面积公式:S=ab,分别求出长和宽增加后的面积,再同原来的面积进行比较即可。
【解答】解:①树叶长与宽的比值越大,长和宽相差就越大,不符合题意。
②把女生人数看作整体“1”,则男生人数为(1+)÷(1+。原说法错误。
③由分析可知:这两所学校的总人数题中没有说明,所以不能确定两校的近视人数,不符合题意。
④解:设原长方形的长是a,宽是b后是原长的(1+)后是原来宽的(1+)
增加后的长是a×(1+)=a
增加后的宽是b×(2+)=b
原长方形的面积是ab
现在长方形的面积是a×ab
所以现在的面积是原来面积的ab÷ab=。
正确,符合题意。
共有一题符合题意。
故选:A。
【点评】本题主要考查了比的意义,用到求一个数比另一个数多或少几分之几(或百分之几),用这两数之差除以另一个数;求一个数是另一个数的几分之几(或百分之几),用这个数除以另一个数。
三、计算。(25分)
18.【分析】根据分数加减乘除法以及四则混合运算的顺序直接进行口算即可。
【解答】解:
8×=6
×=
+=
2÷7+=
6÷=0
+=
8÷50%=4
×÷×=
【点评】本题考查了基本的运算,注意运算数据和运算符号,细心计算即可。
19.【分析】(1)先算小括号里的加法,再算中括号里面的乘法,最后算中括号外的除法;
(2)利用乘法分配律计算;
(3)将除法化成乘法后利用乘法分配律计算;
(4)先算除法,再根据连减的性质计算。
【解答】解:(1)÷[(+]
=÷[×]
=÷
=
(2)(﹣+)×48
=×48﹣×48
=45﹣36+8
=6+8
=17
(3)÷4+×
=×+×
=×(+)
=×1
=
(4)3﹣÷﹣
=7﹣﹣
=3﹣(+)
=3﹣1
=8
【点评】解答本题需熟练掌握四则混合运算顺序,灵活使用运算律和运算性质。
20.【分析】(1)首先根据等式的性质,两边同时加上0.75x,然后两边同时减去0.4,最后两边同时除以0.75即可。
(2)首先化简,然后根据等式的性质,两边同时除以1.2即可。
(3)首先根据等式的性质,两边同时乘,然后两边再同时乘即可。
【解答】解:(1)1﹣75%x=0.6
1﹣0.75x=7.4
1﹣4.75x+0.75x=0.4+0.75x
0.6+0.75x=1
8.4+0.75x﹣4.4=1﹣4.4
0.75x=6.6
0.75x÷5.75=0.6÷5.75
x=0.8
(2)80%x+x=0.72
5.2x=0.72
3.2x÷1.5=0.72÷1.6
x=0.6
(3)x÷=
x÷×=×
x=
x×=×
x=
【点评】此题主要考查了根据等式的性质解方程的能力,即等式两边同时加上或同时减去、同时乘或同时除以一个数(0除外),两边仍相等。
四、操作与实践。(8分)
21.【分析】(1)根据长方体的特征,长方体的6个面一般都是长方形(特殊情况有两个相对的面是正方形),相对面的面积相等,根据长方体展开图“1﹣4﹣1”型,补充完成长方体的展开图。
(2)通过观察长方体的展开图可知,这个长方体的长是3厘米,宽是2厘米,高是1厘米,根据长方体的表面积公式:S=(ab+ah+bh)×2,体积公式:V=abh,把数据代入公式解答。
【解答】解:(1)作图如下:
(2)(3×2+6×1+2×2)×2
=(6+4+2)×2
=11×2
=22(平方厘米)
3×2×4=6(立方厘米)
答:这个长方体的表面积是22平方厘米,体积是6立方厘米。
根答案为:22,5。
【点评】此题考查的目的是理解掌握长方体展开图的特征,长方体的表面积公式、体积公式的灵活运用,关键是熟记公式。
22.【分析】(1)根据三角形面积公式,可得底乘高为24,又因为底和高的比是3:2,可得底和高分别是多少厘米,再画出图形即可。
(2)因为分成两个三角形的高相等,要使面积比为2:1,则只需使三角形的底边的比为2:1即可。
【解答】解:(1)三角形面积=底×高÷2
因为面积是12平方厘米,所以底×高÷2=12
即底×高=24(平方厘米)
又因为底和高的比是8:2,可得底是6厘米。
(2)因为分成两个三角形的高相等,要使面积比为4:1,也就是一个三角形的底是4厘米。
作图如下:
【点评】此题考查比的应用及三角形面积公式的灵活运用知识,结合题意分析解答即可。
五、解决问题。(29分)
23.【分析】(1)根据无盖长方体的表面积公式:S=ab+2ah+2bh,把数据代入公式求出贴瓷砖的面积;然后再乘每平方米瓷砖的价格即可。
(2)根据长方体的体积公式:V=abh,把数据代入公式水深1.6米时,游泳池内水的体积,然后再乘每立方米水的质量即可。
【解答】解:(1)(50×25+50×2×2+25×6×2)×40
=(1250+200+100)×40
=1550×40
=62000(元)
答:一共需要62000元。
(2)50×25×1.2×1
=1250×1.2×1
=2000(吨)
答:在游泳池中注入2000吨水,才能使水深1.3米。
【点评】此题主要考查长方体的表面积公式、体积公式在实际生活中的应用,关键是熟记公式。
24.【分析】A店打九折出售,就是总价的90%,据此算出优惠后的价格;B店是“买5送一”,可以理解为用买5本书的钱买了6本书,那我们以“6”为1组,用30除以6得到5,即得到了5个“6”组,据此算出优惠后的价格;再比较A店和B店优惠后价格的大小即可。
【解答】解:A店:30×50×90%
=1500×90%
=1350(元)
B店:30÷(5+1)×5×50
=30÷6×5×50
=7×5×50
=1250(元)
1350>1250
所以去B店购买比较划算。
【点评】解答此题的关键是根据两种优惠方式求出价格。
25.【分析】根据“工作效率=工作量÷工作时间”即可求出这种智能物流自动分拣系统的工作效率,再根据“工作时间=工作量÷工作效率”即可解答。
【解答】解:36÷(÷)
=36÷
=5(小时)
答:该系统分拣36万件货物需要6小时。
【点评】此题是考查分数除法的应用。关键是记住工作量、工作时间、工作效率三者之间的关系。
26.【分析】(1)根据原价=现价÷折扣,代入对应数值,即可求出机票的原价;
(2)根据已知条件“张老师带了26千克行李,携带行李超过20千克的部分,每千克要按飞机票原价的1.5%购买行李票”可用减法求出超出的部分重量,进而根据乘法的意义求出张老师应付的行李费。
【解答】解:960÷80%=1200(元)
答:海到北京飞机票原价1200元。
1200×1.5%×(26﹣20)
=18×7
=108(元)
答:应付行李费108元。
【点评】本题是一道百分数应用题,解题的关键是,认真读题,根据已知条件找出等量关系式:原价=现价÷折扣,应付的行李费=飞机票原价×1.5%×行李超过20千克的部分。
27.【分析】因为男生人数没有变化,所以把男生人数看作单位“1”,原来女生人数占原来总人数的60%=,也就是原来女生人数占男生人数的,图书馆走出9名女生后,这时女生人数占现在总人数的。也就是现在的女生人数占男生人数的,据此可以求出走出9名女生占男生人数的几分之几,根据已知一个数的几分之几是多少,求这个数,用除法求出男生人数,进而求出原来的女生人数。
【解答】解:60%=
6÷(﹣)÷(8﹣
=9÷(﹣)÷×
=9×××
=30×
=45(人)
答:原来图书馆里女生有45人。
【点评】完成本题要注意这一过程中,男生人数没有发生变化,首先根据前后女生占男生人数的分率变化求出男生人数是完成本题的关键。
相关试卷
这是一份[数学][期末]2023-2024学年河南省平顶山市郏县苏教版六年级上册期末学情检测数学试卷,文件包含数学期末2023-2024学年河南省平顶山市郏县苏教版六年级上册期末学情检测数学试卷解析版pdf、数学期末2023-2024学年河南省平顶山市郏县苏教版六年级上册期末学情检测数学试卷原题版pdf等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。
这是一份2023-2024学年河南省平顶山市郏县五镇六年级(上)月考数学试卷(10月份),共20页。试卷主要包含了填一填,选一选,判一判,算一算,操作计算,解决问题等内容,欢迎下载使用。
这是一份2023-2024学年河南省平顶山市郏县苏教版六年级上册期末学情检测数学试卷,共19页。试卷主要包含了细心填空,选择,计算,操作与实践,解决问题等内容,欢迎下载使用。