湘教版(2019)选择性必修 第二册2.4 空间向量在立体几何中的应用集体备课课件ppt
展开1.了解点到直线的距离、点到平面的距离、线线距离、线面距离的概念.2.能用向量法求点到直线的距离、点到平面的距离、相互平行的直线间的距离、相互平行的平面间的距离并能描述解决这一类问题的程序,体会向量方法在研究几何问题中的作用.核心素养:数学推理、数学运算.
求空间一点P到直线l(Pl)的距离的算法程序如图所示.
用向量方法求解点到平面的距离问题的一般步骤是:(1)确定一个法向量;(2)选择参考向量;(3)确定参考向量在法向量方向上的投影向量;(4)求投影向量的长度.
求空间一点P到平面α(Pα)的距离的算法程序如图所示.
两平行线间的距离处处相等,因而可以利用点到直线的距离来解决两平行线间的距离问题.
求两平行线m,n间的距离的算法程序如图所示.
四、两平行平面间的距离
求两平行平面α,β之间的距离的算法程序如图所示
1.空间内有三点A(2,1,3),B(0,2,5),C(3,7,0),则点B到AC的中点P的距离为( )
2.已知直线l过点A(1,-1,2),和l垂直的一个向量为n=(-3,0,4),则P(3,5,0)到l的距离为( )
3.已知直线l与平面α相交于点O,A∈l,B为线段OA的中点,若点A到平面α的距离为10,则点B到平面α的距离为________.
4.已知平面α的一个法向量为n=(-2,-2,1),点A(-1,3,0)在平面α内,则点P(-2,1,4)到平面α的距离为________.
例1 如图,在空间直角坐标系中有长方体ABCD-A′B′C′D′,AB=1,BC=2,AA′=3,求点B到直线A′C的距离.
解 因为AB=1,BC=2,AA′=3,所以A′(0,0,3),C(1,2,0),B(1,0,0),
反思感悟 用向量法求点到直线的距离的一般步骤(1)求直线的方向向量.(2)计算所求点与直线上某一点所构成的向量在直线的方向向量上的投影向量的长度.(3)利用勾股定理求解.另外,要注意平行直线间的距离与点到直线的距离之间的转化.
跟踪训练 已知在正方体ABCD-A1B1C1D1中,E,F分别是C1C,D1A1的中点,求点A到EF的距离.
解 以D点为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系如图所示,设DA=2,则A(2,0,0),E(0,2,1),F(1,0,2),
二、点到平面的距离与直线到平面的距离
例2 如图,已知正方形ABCD的边长为1,PD⊥平面ABCD,且PD=1,E,F分别为AB,BC的中点.
(1)求点D到平面PEF的距离;
解 建立如图所示的空间直角坐标系,
设DH⊥平面PEF,垂足为H,
(2)求直线AC到平面PEF的距离.
解 连接AC,则AC∥EF,直线AC到平面PEF的距离即为点A到平面PEF的距离,平面PEF的一个法向量为n=(2,2,3),
解 设正四棱柱的高为h(h>0),建立如图所示的空间直角坐标系,有A(0,0,h),B1(1,0,0),D1(0,1,0),C(1,1,h),
设平面AB1D1的法向量为n=(x,y,z),
取z=1,得n=(h,h,1),
解得h=2.故正四棱柱ABCD-A1B1C1D1的高为2.
三、两平行平面间的距离
例3 如图,正方体ABCD-A1B1C1D1的棱长为4,M,N,E,F分别为A1D1,A1B1,C1D1,B1C1的中点,求平面AMN与平面EFBD之间的距离.
解题技巧(1)求两个平行平面之间的距离的实质就是求一个平面内的任意一点到另一个平面的距离.(2)用向量法求点到平面的距离的关键是正确建系,准确求得各点及向量的坐标,然后求出平面的法向量,正确运用公式求解.
1.已知A(0, 0, 2) ,B(1, 0, 2) ,C(0, 2, 0) ,则点A到直线BC的距离为( )
解析 ∵A(0, 0,2),B(1, 0,2),C(0, 2,0),
∴点A到直线BC的距离为
2.若三棱锥P-ABC的三条侧棱两两垂直,且满足PA=PB=PC=1,则点P到平面ABC的距离是( )
解析 分别以PA,PB,PC所在直线为x轴,y轴,z轴建立空间直角坐标系,则A(1,0,0),B(0,1,0),C(0,0,1).可以求得平面ABC的一个法向量为n=(1,1,1),
3.已知棱长为1的正方体ABCD-A1B1C1D1,则平面AB1C 与平面A1C1D 之间的距离为( )
解析 建立如图所示的空间直角坐标系,则A1(1,0,0),C1(0,1,0),D(0,0,1),A(1,0,1) ,
设平面A1C1D的一个法向量为m=(x,y,1) ,
显然平面AB1C∥平面A1C1D,
4.已知正方体ABCD-A1B1C1D1的棱长为2,点E是A1B1的中点,则点A到直线BE的距离是( )
解析 建立空间直角坐标系如图所示,
5.如图,已知长方体ABCD-A1B1C1D1,A1A=5,AB=12,则直线B1C1到平面A1BCD1的距离是( )
则C(0,12,0),D1(0,0,5).设B(x,12,0),B1(x,12,5)(x>0).设平面A1BCD1的法向量为n=(a,b,c),
6.已知直线l经过点A(2,3,1),且向量n=(1,0,-1)所在直线与l垂直,则点P(4,3,2)到l的距离为______.
7.已知正方体ABCD-A1B1C1D1的棱长为2,E,F,G分别是C1C,D1A1,AB的中点,则点A到平面EFG的距离为________.
解析 建系如图,则A(2,0,0),E(0,2,1),F(1,0,2),G(2,1,0),
设n=(x,y,z)是平面EFG的法向量,点A到平面EFG的距离为d,
令z=1,此时n=(1,1,1),
8.如图所示,在直二面角D-AB-E中,四边形ABCD是边长为2的正方形,△AEB是等腰直角三角形,其中∠AEB=90°,则点D到平面ACE的距离为______.
解析 以AB的中点O为坐标原点,分别以OE,OB所在的直线为x轴、y轴,建立如图所示的空间直角坐标系,则A(0,-1,0),E(1,0,0),D(0,-1,2),C(0,1,2).
设平面ACE的法向量n=(x,y,z),
令y=1,∴n=(-1,1,-1).
9.在底面是直角梯形的四棱锥P-ABCD中,侧棱PA⊥底面ABCD,BC∥AD,∠ABC=90°,PA=AB=BC=2,AD=1,则AD到平面PBC的距离为_____.
解析 AD到平面PBC的距离等于点A到平面PBC的距离.由已知可得AB,AD,AP两两垂直.
则A(0,0,0),B(2,0,0),C(2,2,0),P(0,0,2),
设平面PBC的法向量为n=(a,b,c),
取a=1,得n=(1,0,1),
10.如图,在四棱锥O-ABCD中,底面ABCD是边长为2的正方形,OA⊥底面ABCD,OA=2,M,N,R分别为OA,BC,AD的中点,求直线MN与平面OCD的距离及平面MNR与平面OCD的距离.
解 因为M,R分别为AO,AD的中点,所以MR∥OD.在正方形ABCD中,N,R分别为BC,AD的中点,所以NR∥CD.又MR∩NR=R,OD∩CD=D,所以平面MNR∥平面OCD.又MN平面MNR,所以MN∥平面OCD.所以直线MN与平面OCD的距离及平面MNR与平面OCD的距离都等于点N到平面OCD的距离.以点A为坐标原点,建立如图所示的空间直角坐标系A-xyz,则O(0,0,2),C(2,2,0),D(0,2,0),N(2,1,0),
湘教版(2019)选择性必修 第二册2.4 空间向量在立体几何中的应用教案配套ppt课件: 这是一份湘教版(2019)选择性必修 第二册2.4 空间向量在立体几何中的应用教案配套ppt课件,共19页。PPT课件主要包含了新知初探·课前预习,题型探究·课堂解透,答案B等内容,欢迎下载使用。
湘教版(2019)选择性必修 第二册2.4 空间向量在立体几何中的应用集体备课课件ppt: 这是一份湘教版(2019)选择性必修 第二册2.4 空间向量在立体几何中的应用集体备课课件ppt,共20页。PPT课件主要包含了新知初探·课前预习,题型探究·课堂解透,答案AC,答案B等内容,欢迎下载使用。
高中数学人教A版 (2019)选择性必修 第一册1.4 空间向量的应用授课ppt课件: 这是一份高中数学人教A版 (2019)选择性必修 第一册1.4 空间向量的应用授课ppt课件,共26页。PPT课件主要包含了点P到直线l的距离,点到直线的距离,点到面的距离,点到平面的距离,平行线面间的距离,两平行平面间的距离,这个是距离吗,异面直线所成角,线面所成角等内容,欢迎下载使用。