八年级上册2.2 命题与证明教学课件ppt
展开1.会判断一个命题的真假;(重点)2.理解定理、推论、逆定理、互逆定理的概念;(重点、难点)3.会用基本事实取判定其他命题的真假.(难点)
我们已经学过一些图形的特性,如“三角形的内角和等于180度”,“等腰三角形两底角相等”等.根据我们已学过的图形特性,试判断下列句子是否正确. 1.如果两个角是对顶角,那么这两个角相等; 2.两直线平行,同位角相等; 3.同旁内角相等,两直线平行; 4.直角都相等.
根据已有的知识可以判断出句子1、2、4是正确的,句子3是错误的.像这样可以判断出它是正确的还是错误的句子叫做命题. 在数学中,许多命题是由题设(或已知条件)、结论两部分组成的.题设是已知事项;结论是由已知事项推出的事项,这样的命题常可写成“如果……,那么……”的形式.用“如果”开始的部分就是题设,而用“那么”开始的部分就是结论.
例如,在命题1中,“两个角是对顶角”是题设,“这两个角相等”就是结论. 有的命题的题设与结论不十分明显,可以将它写成“如果……,那么……”的形式,就可以分清它的题设和结论了.例如,命题4可写成“如果两个角是直角,那么这两个角相等.”
下列命题的条件是什么?结论是什么?
(1)如果两个角相等,那么它们是对顶角;
(2)如果a>b,b>c,那么a=c;
(3)正方形的四条边都相等.
解:(1)条件:两个角相等,结论:它们是对顶角;
(2)条件:a>b,b>c,结论:a=c;
(3)条件:若一个四边形是正方形, 结论:它的四条边都相等.
下列命题中,哪些正确,哪些错误?
(1)每一个月都有31天;
(2)如果a是有理数,那么a是整数;
(4)同角的补角相等.
我们把正确的命题称为真命题,把错误的命题称为假命题.
判断下列命题为真命题的依据是什么?
(1)如果a是整数,那么a是有理数;
(2)如果△ABC是等边三角形,那么△ABC是等腰三角形.
分别是根据有理数、等腰(等边)三角形的定义作出 的判断.
要判断一个命题是真命题,常常要从命题的条件出发,通过讲道理(推理),得出其结论成立,从而判断这个命题为真命题,这个过程叫证明.
怎样判断一个命题是假命题呢?
要判断一个命题是假命题,只需举出一个例子(反例),它符合命题的条件,但不满足命题的结论,从而就可判断这个命题为假命题.我们通常把这种方法称为“举反例”
例如,要判断命题“如果a是有理数,那么a是整数”是一个假命题,我们举出“0.1是有理数,但是0.1不是整数”这一例子即可判断该命题是假命题.
例1 举反例说明下列命题是假命题.
(1)若两个角不是对顶角,则这两个角不相等;
(2)若ab=0,则a+b=0.
解:(1)如:两条直线平行时的内错角,这两个角不是对顶角,但它 们相等;
(2)如:当a=5,b=0时,ab=0,但a+b≠0.
古希腊数学家欧几里得对数学知识作了系统的总结,把人们公认的真命题作为证明的原始依据,称这些真命题为公理.
我们把少数真命题作为基本事实.
例如,两点确定一条直线;两点之间线段最短等.
人们可以用定义和基本事实作为推理的出发点,去判断其他命题的真假.
基本事实同位角相等,两直线平行.
内错角相等,两直线平行.同旁内角互补,两直线平行.
我们把经过证明为真的命题叫作定理.
经过证明的真命题叫定理
由某定理直接得出的真命题叫作这个定理的推论.
三角形的一个外角等于与它不相邻的两个内角的和
注意:当一个命题是真命题时,它的逆命题不一定是真命题.
问题1:命题“如果∠1和∠2是对顶角,那么∠1=∠2”是真命题吗?写出它的逆命题并判断真假.
解:原命题是真命题.它的逆命题是“如果∠1=∠2,那么∠1和∠2是对顶角.”逆命题是假命题.
总结:如果一个定理的逆命题也是真命题,那么就叫它是原定理的逆定理,这两个定理叫作互逆定理.
问题2:命题“内错角相等,两直线平行”是真命题吗?写出它的逆命题并判断真假.
解:原命题是真命题.它的逆命题是“两直线平行,内错角相等”逆命题是真命题.
例2 试着判断下列定理有没有逆定理:(1)对顶角相等;(2)等角的补角相等;(3)两直线平行,同旁内角互补.
解:(1)其逆命题是:相等的角是对顶角,这个逆命题不正确,原定理没有逆定理.(2)其逆命题是:如果两个角的补角相等,那么这两个角相等,这个逆命题正确,原定理有逆定理.(3)其逆命题是:同旁内角互补,两直线平行,这个逆命题正确,原定理有逆定理.
判断一个定理是否有逆定理,应写出这个定理的逆命题,再分析是否为真命题,若是真命题,则它就是原定理的逆定理;若逆命题是假命题,则原定理没有逆定理.
下列命题中,哪些是真命题,哪些是假命题?
(1)绝对值最小的数是0;
(2)相等的角是同位角;
(3)一个角的补角大于这个角;
(4)在同一平面内,如果直线a⊥l,b⊥l,那么a∥b.
(3)两条直线被第三条直线所截同位角相等.
两条相交的直线a、b被第三条直线l所截(如图),它们的同位角不相等.
-1和-3的积是-1×(-3)>0,-1和-3不是正数;
4. 举反例说明下列命题是假命题:
(1)两个锐角的和是钝角;
(2)如果数a,b的积ab>0,那么a,b都是正数;
直角三角形的两个锐角和不是钝角;
9对于同一平面内的三条直线a,b,c,给出下列五个论断:①a∥b;②b∥c;③a⊥b;④a∥c;⑤a⊥c.请以其中两个论断作为条件,一个论断作为结论, 组成一个你认为正确的命题(至少写两个命题).
解:若a∥b,b∥c,则a∥c;若a∥b,a∥c,则b∥c;若b∥c,a∥c,则a∥b;若a⊥b,a⊥c,则b∥c;若a⊥b,b∥c,则a⊥c;若b∥c,a⊥c,则a⊥b .
初中数学湘教版八年级上册2.2 命题与证明教学ppt课件: 这是一份初中数学湘教版八年级上册2.2 命题与证明教学ppt课件,文件包含教学课件八上·湘教·22命题与证明第3课时命题的证明pptx、223docx等2份课件配套教学资源,其中PPT共41页, 欢迎下载使用。
初中数学湘教版八年级上册2.2 命题与证明教学课件ppt: 这是一份初中数学湘教版八年级上册2.2 命题与证明教学课件ppt,文件包含教学课件八上·湘教·22命题与证明第1课时定义与命题pptx、221docx等2份课件配套教学资源,其中PPT共18页, 欢迎下载使用。
湘教版八年级上册2.2 命题与证明评课ppt课件: 这是一份湘教版八年级上册2.2 命题与证明评课ppt课件,共13页。PPT课件主要包含了不是命题,是命题,绝对值等内容,欢迎下载使用。