初中数学青岛版八年级下册6.3 特殊的平行四边形集体备课课件ppt
展开6.3.4 特殊的平行四边形
学习目标
1、经历探索正方形有关的性质和判定方法的过程, 培养推理能力,养成主动探究习惯。2、探索并掌握正方形有关的性质和判定方法。3、能运用正方形有关的性质和判定方法解决问题。
请同学们阅读课本第26页,回答以下问题:
1、正方形的定义?2、正方形的性质有哪些?3、正方形是轴对称图形吗?
有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形
每条对角线平分一组对角。
1、在下列性质中,平行四边形具有的是_______,矩形具有的是_________,菱形具有的____________, 正方形具有的是_______________。 (1)四边都相等; (2)对角线互相平分; (3)对角线相等; (4)对角线互相垂直; (5)四个角都是直角; (6)每条对角线平分一组对角; (7)对边相等且平行; (8)有两条对称轴。
2、判断。(1)正方形一定是矩形。( )(2)正方形一定是菱形。( )(3)菱形一定是正方形。( )(4)矩形一定是正方形。( )(5)正方形、矩形、菱形都是平行四边形。( )
1、正方形、矩形、菱形及平行四边形四者之间的关系?2、怎么判断一个四边形是正方形?
发现: 一组邻边相等的矩形 是正方形
发现: 一个角为直角的菱形是正方形
有一组邻边相等且有一个角是直角
正方形、矩形、菱形及平行四边形四者之间的关系
①对角线互相垂直且相等的平行四边形; ②对角线互相垂直的矩形; ③对角线相等的菱形; ④对角线互相垂直平分且相等的四 边形。
1.课本练习P27第一题2.满足下列条件的四边形是不是正方形:
如图,点P是正方形ABCD的对角线BD上的一点,PM⊥BC,PN⊥CD,垂足分别是点M,N.求证:AP=MN
证明:连接PC, ∵ABCD是正方形, ∴∠C=90°, ∵PN⊥CD,PM⊥BC, ∴PMCN是矩形, ∴MN=PC, 在△ADP和△CDP中 AD=CD,∠ADP=∠CDP,DP=DP,
∴△ADP≌△CDP ∴AP=CP, ∵MN=CP, ∴AP=MN
思考:如果再连接AC又有什么方法?
1.课本练习P27第二题
对边平行, 四`条边 都相等
对角线互相垂直平分,每条对角线平分一组对角
对角线互相垂直平分且相等,每条对角线平分一组对角
课堂小结
特殊四边形的常用判定方法
(1)两组对边分别平行;
(2)两组对边分别相等;
(4)对角线互相平分;
(3)一组对边平行且相等
(1)有一个角是直角的平行四边形是矩形;
(2)有三个角是直角的四边形是矩形;
(3)对角线相等的平行四边形是矩形。
(1)有一组邻边相等的平行四边形是菱形;
(2)四条边都相等的四边形是菱形;
(3)对角线互相垂直的平行四边形是菱形。
(2)有一组邻边相等的矩形是正方形;
(3)有一个角是直角的菱形是正方形。
(1)有一个角是直角且有一组邻边相等的平行四边形是正方形;
A、对角线互相垂直且相等 B、对角线相等C、一组邻边相等 D、对角互补
2、矩形、菱形、正方形都有的性质是( )
A、对角线相等 B、对角线互相平分C、对角线互相垂直 D、对角线平分一组对角
3、在平行四边形、菱形、矩形、正方形中,能找到一点,使该点到各边距离相等的四边形是( )
A、平行四边形、菱形、 B、菱形、矩形C、矩形、正方形 D、菱形、正方形
达标检测
4、正方形两条对角线的和为8cm,它的面积为 。
5、如图所示,正方形ABCD中,AO=DO,CO=CD,则∠BOC=( )
6、如图所示,四边形ABCD是正方形中,延长BC到E,使CE=AC,连接AE,交CD于F,则 ∠AFC =( )
浙教版第五章 特殊平行四边形5.3 正方形集体备课课件ppt: 这是一份浙教版第五章 特殊平行四边形5.3 正方形集体备课课件ppt,共15页。PPT课件主要包含了教学目标,教学难点,矩形的对角线相等,复习引入,探究新知,角四个角都是直角,想一想,本题还有其他解法吗,∴AC⊥BD,∴∠AOB90°等内容,欢迎下载使用。
数学青岛版第6章 平行四边形6.3 特殊的平行四边形教学ppt课件: 这是一份数学青岛版第6章 平行四边形6.3 特殊的平行四边形教学ppt课件,共21页。PPT课件主要包含了教学目标,复习回顾,探究新知,有一个角是直角,有一组邻边相等,正方形的定义,正方形的性质,正方形的判定,∵ACBD,∵ABBC等内容,欢迎下载使用。
数学八年级下册6.3 特殊的平行四边形教学课件ppt: 这是一份数学八年级下册6.3 特殊的平行四边形教学课件ppt,共15页。PPT课件主要包含了教师引领,学习目标,矩形的定义,你能证明上述结论吗,自主学习,矩形的判定定理1,几何语言,小组讨论,小组展示,矩形的判定定理2等内容,欢迎下载使用。