![第8章 整式乘法专题:教材P92“读一读”——杨辉三角(含答案)第1页](http://img-preview.51jiaoxi.com/2/3/14094496/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
第8章 整式乘法专题:教材P92“读一读”——杨辉三角(含答案)
展开
这是一份第8章 整式乘法专题:教材P92“读一读”——杨辉三角(含答案),共3页。
8.微专题:教材P92“读一读”——杨辉三角1.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”解答下列问题:(a+b)0………………1(a+b)1……………1 1(a+b)2…………1 2 1(a+b)3………1 3 3 1(a+b)4……1 4 6 4 1(a+b)5…1 5 10 10 5 1……(1)根据上面的规律,(a+b)4的展开式中各项系数最大的数为( )A.4 B.5 C.6 D.7(2)根据“杨辉三角”,请计算(a+b)20的展开式中第三项的系数为( )A.2017 B.2016C.191 D.190(3)写出(a+b)5的展开式; (4)利用上面的规律计算:25-5×24+10×23-10×22+5×2-1. 2.如图为杨辉三角的一部分,它的作用是指导读者按规律写出形如(a+b)n(n为正整数)的展开式的系数,请你仔细观察下列等式中的规律,利用杨辉三角解决下列问题.11 11 2 11 3 3 1…(a+b)=a+b;(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;……(1)(a+b)4展开式中第二项是________;(2)求(2a-1)5的展开式; (3)计算:26+6×25×+15×24×+20 ×23×+15×22×+6×2×5+. 参考答案与解析1.解:(1)C(2)D 解析:找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n-2)+(n-1),∴(a+b)20第三项系数为1+2+3+…+19=190.(3)∵(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3,(a+b)4=a4+4a3b+6a2b2+4ab3+b4,∴(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5.(4)25-5×24+10×23-10×22+5×2-1=25+5×24×(-1)1+10×23×(-1)2+10×22×(-1)3+5×2×(-1)4+(-1)5=[2+(-1)]5=(2-1)5=15=1.(根据(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5的逆运用得出)2.解:(1)4a3b(2)(2a-1)5=(2a)5-5(2a)4+10(2a)3-10(2a)2+5·2a-1=32a5-80a4+80a3-40a2+10a-1.(3)原式===.
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)