所属成套资源:2023版考前三个月冲刺专题练
2023版考前三个月冲刺专题练 第19练 空间向量与空间角【无答案版】
展开
这是一份2023版考前三个月冲刺专题练 第19练 空间向量与空间角【无答案版】,共4页。
第19练 空间向量与空间角[考情分析] 高考必考内容,常以空间几何体为载体考查空间角,是高考命题的重点,常与空间线、面关系的证明相结合,热点为平面与平面的夹角的求解,均以解答题的形式进行考查,难度主要体现在建立空间直角坐标系和准确计算上.题目难度为中档题.一、异面直线所成的角例1 (1)(2022·龙岩模拟)已知直三棱柱ABC-A1B1C1的所有棱长都相等,M为A1C1的中点,则AM与BC1所成角的正弦值为( )A. B. C. D.(2)(2022·毕节模拟)在正四棱锥S-ABCD中,底面边长为2,侧棱长为4,点P是底面ABCD内一动点,且SP=,则当A,P两点间距离最小时,直线BP与直线SC所成角的余弦值为( )A. B. C. D.规律方法 (1)设直线l,m的方向向量分别为a=(a1,b1,c1),b=(a2,b2,c2),设l,m的夹角为θ,则cos θ==.(2)异面直线所成的角的范围为.跟踪训练1 (1)(2022·丹东模拟)在三棱锥P-ABC中,PA⊥平面ABC,PA=AB,△ABC是正三角形,M,N分别是AB,PC的中点,则直线MN,PB所成角的余弦值为( )A. B. C. D.(2)(2022·长春模拟)在矩形ABCD中,O为BD的中点且AD=2AB,将平面ABD沿对角线BD翻折至二面角A-BD-C的大小为90°,则直线AO与CD所成角的余弦值为( )A. B. C. D.二、直线与平面所成的角例2 (2022·全国甲卷)在四棱锥P-ABCD中,PD⊥底面ABCD,CD∥AB,AD=DC=CB=1,AB=2,DP=.(1)证明:BD⊥PA; (2)求PD与平面PAB所成的角的正弦值.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________规律方法 (1)设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为μ=(a2,b2,c2),设直线l与平面α的夹角为θ,则sin θ=|cos〈a,μ〉|=.(2)线面角的范围为.跟踪训练2 (2022·绍兴模拟)如图,在四棱台ABCD-A1B1C1D1中,底面ABCD为矩形,平面DCC1D1⊥平面ABCD,AD=DD1=D1C1=C1C=DC=1. (1)求证:BD1⊥DD1;(2)求直线BD1和平面ABB1A1所成角的正弦值.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________三、平面与平面的夹角例3 (2022·新高考全国Ⅰ改编)如图,直三棱柱ABC-A1B1C1的体积为4,△A1BC的面积为2.(1)求A到平面A1BC的距离;(2)设D为A1C的中点,AA1=AB,平面A1BC⊥平面ABB1A1,求平面ABD与平面BCD夹角的正弦值.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________规律方法 (1)设平面α,β的法向量分别为μ=(a3,b3,c3),v=(a4,b4,c4),且平面α与平面β的夹角为θ,则cos θ=|cos〈μ,v〉|=.(2)平面与平面的夹角的取值范围为.跟踪训练3 (2022·重庆调研)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC,BD相交于点N,DN=2BN=2,PA=AC=AD=3,∠ADB=30°. (1)求证:AC⊥平面PAD;________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________(2)若点M为PD的中点,求平面PAB与平面MAC夹角的正弦值.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
相关学案
这是一份2023版考前三个月冲刺专题练 第20练 空间向量与距离、探究性问题【无答案版】,共3页。
这是一份2023版考前三个月冲刺专题练 第18练 空间点、直线、平面之间的位置关系【无答案版】,共9页。
这是一份2023版考前三个月冲刺专题练 第17练 空间几何体【无答案版】,共7页。