所属成套资源:2023版考前三个月冲刺专题练
2023版考前三个月冲刺专题练 第26练 直线与圆锥曲线的位置关系【无答案版】
展开
这是一份2023版考前三个月冲刺专题练 第26练 直线与圆锥曲线的位置关系【无答案版】,共6页。
第26练 直线与圆锥曲线的位置关系1.(2022·全国乙卷)设F为抛物线C:y2=4x的焦点,点A在C上,点B(3,0),若|AF|=|BF|,则|AB|等于( )A.2 B.2 C.3 D.32.(2020·全国Ⅰ)设F1,F2是双曲线C:x2-=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则△PF1F2的面积为( )A. B.3 C. D.23.(2014·全国Ⅱ)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为( )A. B. C. D.4.(2013·全国Ⅰ)已知椭圆E:+=1(a>b>0)的右焦点为F(3,0),过点F的直线交E于A,B两点.若AB的中点坐标为(1,-1),则E的方程为( )A.+=1 B.+=1C.+=1 D.+=15.(多选)(2022·新高考全国Ⅰ)已知O为坐标原点,点A(1,1)在抛物线C:x2=2py(p>0)上,过点B(0,-1)的直线交C于P,Q两点,则( )A.C的准线为y=-1B.直线AB与C相切C.|OP|·|OQ|>|OA|2D.|BP|·|BQ|>|BA|26.(2015·全国Ⅰ)已知F是双曲线C:x2-=1的右焦点,P是C的左支上一点,A(0,6).当△APF周长最小时,该三角形的面积为________.7.(2019·全国Ⅰ)已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;(2)若=3,求|AB|.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________8.(2022·新高考全国Ⅰ)已知点A(2,1)在双曲线C:-=1(a>1)上,直线l交C于P,Q两点,直线AP,AQ的斜率之和为0.(1)求l的斜率;(2)若tan∠PAQ=2,求△PAQ的面积.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________9.(2022·赤峰模拟)若椭圆+=1的弦被点(2,1)平分,则这条弦所在的直线方程是( )A.x-2y=0 B.3x+y-7=0C.x+2y-4=0 D.9x+8y-26=010.抛物线y2=4x的焦点弦被焦点分为长是m和n的两部分,则m与n的关系是( )A.m+n=mn B.m+n=4C.mn=4 D.无法确定11.(多选)(2022·茂名模拟)已知抛物线C:x2=4y的焦点为F,准线为l,P是抛物线C上第一象限的点,|PF|=5,直线PF与抛物线C的另一个交点为Q,则下列选项正确的是( )A.点P的坐标为(4,4)B.|QF|=C.S△OPQ=D.过点M(x0,-1)作抛物线C的两条切线MA,MB,其中A,B为切点,则直线AB的方程为x0x-2y+2=012.(2022·玉林模拟)抛物线y2=2px(p>0)的焦点F到准线的距离为2,过点F的直线l交抛物线于A,B两点,则|AF|·|BF|的最小值是( )A.2 B. C.4 D.213.(2022·杭州模拟)已知双曲线H的两条渐近线互相垂直,过H的右焦点F且斜率为3的直线与H交于A,B两点,与H的渐近线交于C,D两点.若|AB|=5,则|CD|=______.14.(2022·贵港模拟)已知斜率为k(k>0)的直线过抛物线C:y2=4x的焦点F且与抛物线C相交于A,B两点,过A,B分别作该抛物线准线的垂线,垂足分别为A1,B1,若△A1BB1与△ABA1的面积之比为2,则k的值为________.15.(2022·无锡模拟)如图,A1,A2是双曲线-=1的左、右顶点,B1,B2是该双曲线上关于x轴对称的两点,直线A1B1与A2B2的交点为E. (1)求点E的轨迹Γ的方程;(2)设点Q(1,-1),过点Q的两条直线分别与轨迹Γ交于点A,C和点B,D.若AB∥CD,求直线AB的斜率.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________16.(2022·玉林模拟)设椭圆E:+=1(a>b>0)过M,N两点,O为坐标原点.(1)求椭圆E的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且⊥?若存在,写出该圆的方程,并求|AB|的取值范围;若不存在,请说明理由.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________[考情分析] 直线与圆锥曲线的位置关系是命题的热点,尤其是有关弦长计算及存在性问题,运算量大,能力要求高,突出方程思想、转化化归与分类讨论思想方法的考查,难度为高档. 一、弦长、面积问题核心提炼判断方法:通过解直线方程与圆锥曲线方程联立得到的方程组进行判断.弦长公式:|AB|=|x1-x2|,或|AB|=|y1-y2|.练后反馈题目156811131516 正误 错题整理: 二、中点弦问题核心提炼解决圆锥曲线“中点弦”问题的方法1.根与系数的关系法:联立直线与圆锥曲线的方程得到方程组,消元得到一元二次方程后,由根与系数的关系及中点坐标公式求解.2.点差法:设直线与圆锥曲线的交点(弦的端点)坐标为A(x1,y1),B(x2,y2),将这两点坐标代入圆锥曲线的方程,并对所得两式作差,得到一个与弦AB的中点和直线AB的斜率有关的式子,可以大大减少计算量.练后反馈题目49 正误 错题整理: 三、圆锥曲线中二级结论的应用核心提炼1.椭圆焦点三角形面积为b2tan (α为|F1F2|的对角).2.双曲线焦点三角形面积为(α为|F1F2|的对角).3.抛物线的有关性质:已知抛物线y2=2px(p>0)的焦点为F,直线l过点F且与抛物线交于两点A(x1,y1),B(x2,y2),则(1)|AB|=x1+x2+p=(α为直线l的倾斜角).(2)以AB为直径的圆与抛物线的准线相切.(3)+=.练后反馈题目2371012 正误 错题整理: 1.[T2补偿](2022·亳州模拟)已知双曲线-=1(a>0,b>0),过原点的直线与双曲线交于A,B两点,以线段AB为直径的圆恰好过双曲线的右焦点F,若△ABF的面积为2a2,则双曲线的离心率为( )A. B. C.2 D.2.[T3补偿](2022·新乡模拟)已知抛物线C:y2=2px(p>0)的准线x=-1与x轴交于点A,F为C的焦点,B是C上第一象限内的点,则取得最大值时,△ABF的面积为( )A.2 B.3 C.4 D.63.[T4补偿](多选)(2022·梅州模拟)设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点P在椭圆上,且PF1⊥F1F2,|PF1|=,|PF2|=,过点M(-2,1)的直线l交椭圆于A,B两点,且A,B关于点M对称,则下列结论正确的有( )A.椭圆的方程为+=1B.椭圆的焦距为C.椭圆上存在2个点Q,使得·=0D.直线l的方程为8x-9y+25=04.[T9补偿](2022·运城模拟)椭圆+=1(a>b>0)的离心率为,直线x-2y+b=0与椭圆交于P,Q两点,且PQ的中点为E,O为原点,则直线OE的斜率是________.5.[T16补偿](2022·重庆模拟)设椭圆+=1(a>b>0)的离心率e=,焦距为4.(1)求椭圆的标准方程;(2)过椭圆右焦点F的动直线l交椭圆于A,B两点,P为直线x=3上的一点,是否存在直线l与点P,使得△ABP恰好为等边三角形,若存在,求出△ABP的面积;若不存在,请说明理由.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
相关学案
这是一份2023版考前三个月冲刺专题练 第32练 分类讨论思想【无答案版】,共6页。
这是一份2023版考前三个月冲刺专题练 第34练 客观题的解法【无答案版】,共5页。
这是一份2023版考前三个月冲刺专题练 第31练 数形结合思想【无答案版】,共5页。