泰安市东平明湖中学2022-2023学年度高中段学校招生考试试题和答案(五)
展开
这是一份泰安市东平明湖中学2022-2023学年度高中段学校招生考试试题和答案(五),共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
泰安市东平明湖中学2022-2023学年度高中段学校招生考试试题(五)一、选择题(本大题共12小题,每小题选对得3分)1.下列运算正确的是( )A. B. C. D.2.下列运算正确的是( )A. B.C. D.3.若一个圆锥的母线长是它底面半径的3倍,则它的侧面展开图的圆心角等于( )A. B. C. D.4.将化成的形式为( )A. B.C. D.5.计算的结果为( )A. B. C. D.6.如图,在中,,于,若,,则的值为( )A. B. C. D.7.如图,在正方形中,是的中点,是上一点,且,下列结论:①,②,③,④.其中正确的个数为( )A.1 B.2 C.3 D.4 8.如图,是等腰直角三角形,且,曲线叫做“等腰直角三角形的渐开线”,其中,,,的圆心依次按循环.如果,那么由曲线和线段围成图形的面积为( )A. B.C. D.9.已知三点,,都在反比例函数的图象上,若,,则下列式子正确的是( )A. B. C D. 10.半径分别为13和15的两圆相交,且公共弦长为24,则两圆的圆心距为( )A.或 B.或 C. D.或11.若,是方程的两个不相等的实数根,则代数式的值是( )A. B. C. D.12.如图,四边形是边长为的正方形,动点在的边上沿的路径以的速度运动(点不与重合).在这个运动过程中,的面积随时间的变化关系用图象表示,正确的为( ) 二、填空题(本大题共7小题,满分21分.只要求填写最后结果,每小题填对得3分)13.方程的解是 .14.如图,和是分别沿着边翻折形成的,若,则的度数是 .15.若关于的不等式组有解,则实数的取值范围是 .16.如图,与轴相交于点,,与轴相切于点,则圆心的坐标是 .17.如图,图①,图②,图③,……是用围棋棋子摆成的一列具有一定规律的“山”字.则第个“山”字中的棋子个数是 .18.如图,一游人由山脚沿坡角为的山坡行走600m,到达一个景点,再由沿山坡行走200m到达山顶,若在山顶处观测到景点的俯角为,则山高等于 (结果用根号表示)19.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密).已知加密规则为:明文对应密文.例如:明文1,2,3对应密文8,11,9.当接收方收到密文12,17,27时,则解密得到的明文为 .三、解答题分组频数频率 合计21.(本小题满分8分)如图,在梯形中,,对角线平分,的平分线交于分别是的中点.(1)求证:;(2)当与满足怎样的数量关系时,?并说明理由 22.(本小题满分9分)某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价比第一次提高了1元,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少? 23.(本小题满分9分)如图,在中,,以为直径的圆交于点,交于点,过点作,垂足为.(1)求证:为的切线;(2)若过点且与平行的直线交的延长线于点,连结.当是等边三角形时,求的度数. 24.(本小题满分9分)市园林处为了对一段公路进行绿化,计划购买两种风景树共900棵.两种树的相关信息如下表:项目品种单价(元/棵)成活率8092%10098%若购买种树棵,购树所需的总费用为元.(1)求与之间的函数关系式;(2)若购树的总费用82000元,则购种树不少于多少棵?(3)若希望这批树的成活率不低于94%,且使购树的总费用最低,应选购两种树各多少棵?此时最低费用为多少? 25.(本小题满分10分)如图,在中,,,,将绕点按逆时针方向旋转至,点的坐标为(0,4).(1)求点的坐标;(2)求过,,三点的抛物线的解析式;(3)在(2)中的抛物线上是否存在点,使以为顶点的三角形是等腰直角三角形?若存在,求出所有点的坐标;若不存在,请说明理由. 26.(本小题满分12分)如图,在中,,是边上的高,是边上的一个动点(不与重合),,,垂足分别为.(1)求证:;(2)与是否垂直?若垂直,请给出证明;若不垂直,请说明理由;(3)当时,为等腰直角三角形吗?并说明理由.
[参考答案]一、选择题(每小题3分,共36分)题号123456789101112答案CDACABBCDDAB二、填空题(本大题共7小题,每小题3分,共21分)13., 14. 15. 16. 17. 18. 19.三、解答题(本大题共7小题,满分63分)20.(本小题满分6分)解:(1),,;,,···············································4分(2)··································6分21.(本小题满分8分)(1)证明:又·······································2分又,·······························································3分又·······························································5分(2)当时,······················································6分·······························································7分又四边形是平行四边形·······························································8分22.(本小题满分9分)解:设第一次购书的进价为元,则第二次购书的进价为元.根据题意得:·······4分去分母,整理得解之得:,经检验,都是原方程的解每本书的定价为元只取····························································6分所以第一次购书为(本).第二次购书为(本)第一次赚钱为(元)第二次赚钱为(元)···············································8分所以两次共赚钱(元)答:该老板两次售书总体上是赚钱了,共赚了520元.······················9分23.(本小题满分9分)(1)证明:连结是的直径·······································2分是等腰三角形又·······································4分是的切线························································5分(2)是的直径是等边三角形是的垂直平分线·······························································7分又,是等边三角形·······························································9分24.(本小题满分9分)解:(1) ······················································3分(2)由题意得:即购种树不少于400棵···············································5分(3)·······························································7分随的增大而减小当时,购树费用最低为(元)当时,此时应购种树600棵,种树300棵·······································9分25.(本小题满分10分)解:(1)过点作垂直于轴,垂足为则四边形为矩形在中,点的坐标为·································3分(2)在抛物线上,,,在抛物线上·······························································5分解之得所求解析式为.···················································7分(3)①若以点为直角顶点,由于,点在抛物线上,则点为满足条件的点.②若以点为直角顶点,则使为等腰直角三角形的点的坐标应为或,经计算知;此两点不在抛物线上.③若以点为直角顶点,则使为等腰直角三角形的点的坐标应为或,经计算知;此两点也不在抛物线上.综上述在抛物线上只有一点使为等腰直角三角形.························10分26.(本小题满分12分)(1)证明:在和中,··········································3分(2)与垂直·································4分证明如下:在四边形中,四边形为矩形由(1)知·······························································6分为直角三角形,·······························································8分又即······························································10分(3)当时,为等腰直角三角形,理由如下:,由(2)知:又为等腰直角三角形················································12分
相关试卷
这是一份泰安市东平明湖中学2022-2023学年度高中段学校招生考试试题和答案(一),共11页。试卷主要包含了本试题分第Ⅰ卷和第Ⅱ卷两部分,分式方程的解是,如图,在中,的度数为是上一点,,在同一直角坐标系中,函数和等内容,欢迎下载使用。
这是一份泰安市东平明湖中学2022-2023学年度高中段学校招生考试试题和答案(四),共14页。试卷主要包含了 QUOTE 的倒数是A,下列运算正确的是,下列图形,下列等式不成立的是,下列几何体等内容,欢迎下载使用。
这是一份泰安市东平明湖中学2022-2023学年度高中段学校招生考试试题和答案(三),共10页。试卷主要包含了答卷前将密封线内的项目填写清楚, 14, 19等内容,欢迎下载使用。