年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    第28章+锐角三角形选择、填空培优练习-2022—2023学年人教版九年级数学下册

    第28章+锐角三角形选择、填空培优练习-2022—2023学年人教版九年级数学下册第1页
    第28章+锐角三角形选择、填空培优练习-2022—2023学年人教版九年级数学下册第2页
    第28章+锐角三角形选择、填空培优练习-2022—2023学年人教版九年级数学下册第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第28章+锐角三角形选择、填空培优练习-2022—2023学年人教版九年级数学下册

    展开

    这是一份第28章+锐角三角形选择、填空培优练习-2022—2023学年人教版九年级数学下册,共19页。试卷主要包含了0=   等内容,欢迎下载使用。
    第28章 锐角三角形选择、填空培优练习-2022—2023学年人教版九年级数学下册
    一.选择题(共8小题)
    1.(2022•贵港)如图,在4×4网格正方形中,每个小正方形的边长为1,顶点为格点,若△ABC的顶点均是格点,则cos∠BAC的值是(  )

    A. B. C. D.
    2.(2022•贵港)如图,某数学兴趣小组测量一棵树CD的高度,在点A处测得树顶C的仰角为45°,在点B处测得树顶C的仰角为60°,且A,B,D三点在同一直线上,若AB=16m,则这棵树CD的高度是(  )

    A.8(3﹣)m B.8(3+)m C.6(3﹣)m D.6(3+)m
    3.(2022•黑龙江)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,山高为(  )米

    A.600﹣250 B.600﹣250 C.350+350 D.500
    4.(2022•广西)如图,某博物馆大厅电梯的截面图中,AB的长为12米,AB与AC的夹角为α,则高BC是(  )

    A.12sinα米 B.12cosα米 C.米 D.米
    5.(2022•玉林)如图,从热气球A看一栋楼底部C的俯角是(  )

    A.∠BAD B.∠ACB C.∠BAC D.∠DAC
    6.(2022•荆州)如图,在平面直角坐标系中,点A,B分别在x轴负半轴和y轴正半轴上,点C在OB上,OC:BC=1:2,连接AC,过点O作OP∥AB交AC的延长线于P.若P(1,1),则tan∠OAP的值是(  )

    A. B. C. D.3
    7.(2022•十堰)如图,坡角为α的斜坡上有一棵垂直于水平地面的大树AB,当太阳光线与水平线成45°角沿斜坡照下时,在斜坡上的树影BC长为m,则大树AB的高为(  )

    A.m(cosα﹣sinα) B.m(sinα﹣cosα)
    C.m(cosα﹣tanα) D.﹣
    8.(2022•随州)如图,已知点B,D,C在同一直线的水平地面上,在点C处测得建筑物AB的顶端A的仰角为α,在点D处测得建筑物AB的顶端A的仰角为β,若CD=α,则建筑物AB的高度为(  )

    A. B.
    C. D.
    二.填空题(共10小题)
    9.(2022•黄石)某校数学兴趣小组开展“无人机测旗杆”的活动:已知无人机的飞行高度为30m,当无人机飞行至A处时,观测旗杆顶部的俯角为30°,继续飞行20m到达B处,测得旗杆顶部的俯角为60°,则旗杆的高度约为    m.
    (参考数据:≈1.732,结果按四舍五入保留一位小数)

    10.(2022•荆门)计算:+cos60°﹣(﹣2022)0=   .
    11.(2022•荆门)如图,一艘海轮位于灯塔P的北偏东45°方向,距离灯塔100海里的A处,它沿正南方向以50海里/小时的速度航行t小时后,到达位于灯塔P的南偏东30°方向上的点B处,则t=   小时.

    12.(2022•柳州)如图,某水库堤坝横断面迎水坡的坡角为α,sinα=,堤坝高BC=30m,则迎水坡面AB的长度为    m.

    13.(2022•河池)如图,把边长为1:2的矩形ABCD沿长边BC,AD的中点E,F对折,得到四边形ABEF,点G,H分别在BE,EF上,且BG=EH=BE=2,AG与BH交于点O,N为AF的中点,连接ON,作OM⊥ON交AB于点M,连接MN,则tan∠AMN=   .

    14.(2022•绥化)定义一种运算:
    sin(α+β)=sinαcosβ+cosαsinβ,
    sin(α﹣β)=sinαcosβ﹣cosαsinβ.
    例如:当α=45°,β=30°时,sin(45°+30°)=×+×=,则sin15°的值为    .
    15.(2022•齐齐哈尔)在△ABC中,AB=3,AC=6,∠B=45°,则BC=   .
    16.(2022•桂林)如图,某雕塑MN位于河段OA上,游客P在步道上由点O出发沿OB方向行走.已知∠AOB=30°,MN=2OM=40m,当观景视角∠MPN最大时,游客P行走的距离OP是    米.

    17.(2022•湖北)如图,有甲乙两座建筑物,从甲建筑物A点处测得乙建筑物D点的俯角α为45°,C点的俯角β为58°,BC为两座建筑物的水平距离.已知乙建筑物的高度CD为6m,则甲建筑物的高度AB为    m.
    (sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,结果保留整数).

    18.(2022•武汉)如图,沿AB方向架桥修路,为加快施工进度,在直线AB上湖的另一边的D处同时施工.取∠ABC=150°,BC=1600m,∠BCD=105°,则C,D两点的距离是    m.


    第28章 锐角三角形选择、填空培优练习-2022—2023学年人教版九年级数学下册
    参考答案与试题解析
    一.选择题(共8小题)
    1.(2022•贵港)如图,在4×4网格正方形中,每个小正方形的边长为1,顶点为格点,若△ABC的顶点均是格点,则cos∠BAC的值是(  )

    A. B. C. D.
    【解答】解:延长AC到D,连接BD,如图:

    ∵AD2=20,BD2=5,AB2=25,
    ∴AD2+BD2=AB2,
    ∴∠ADB=90°,
    ∴cos∠BAC===,
    故选:C.
    2.(2022•贵港)如图,某数学兴趣小组测量一棵树CD的高度,在点A处测得树顶C的仰角为45°,在点B处测得树顶C的仰角为60°,且A,B,D三点在同一直线上,若AB=16m,则这棵树CD的高度是(  )

    A.8(3﹣)m B.8(3+)m C.6(3﹣)m D.6(3+)m
    【解答】解:设AD=x米,
    ∵AB=16米,
    ∴BD=AB﹣AD=(16﹣x)米,
    在Rt△ADC中,∠A=45°,
    ∴CD=AD•tan45°=x(米),
    在Rt△CDB中,∠B=60°,
    ∴tan60°===,
    ∴x=24﹣8,
    经检验:x=24﹣8是原方程的根,
    ∴CD=24﹣8=8(3﹣))米,
    ∴这棵树CD的高度是8(3﹣)米,
    故选:A.
    3.(2022•黑龙江)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,山高为(  )米

    A.600﹣250 B.600﹣250 C.350+350 D.500
    【解答】解:设EF=5x米,
    ∵斜坡BE的坡度为5:12,
    ∴BF=12x米,
    由勾股定理得:(5x)2+(12x)2=(1300)2,
    解得:x=100,
    则EF=500米,BF=1200米,
    由题意可知,四边形DCFE为矩形,
    ∴DC=EF=500米,DE=CF,
    在Rt△ADE中,tan∠AED=,
    则DE==AD,
    在Rt△ACB中,tan∠ABC=,
    ∴=,
    解得:AD=600﹣750,
    ∴山高AC=AD+DC=600﹣750+500=(600﹣250)米,
    故选:B.

    4.(2022•广西)如图,某博物馆大厅电梯的截面图中,AB的长为12米,AB与AC的夹角为α,则高BC是(  )

    A.12sinα米 B.12cosα米 C.米 D.米
    【解答】解:Rt△ABC中,sinα=,
    ∵AB=12米,
    ∴BC=12sinα(米).
    故选:A.
    5.(2022•玉林)如图,从热气球A看一栋楼底部C的俯角是(  )

    A.∠BAD B.∠ACB C.∠BAC D.∠DAC
    【解答】解:从热气球A看一栋楼底部C的俯角是∠DAC.
    故选:D.
    6.(2022•荆州)如图,在平面直角坐标系中,点A,B分别在x轴负半轴和y轴正半轴上,点C在OB上,OC:BC=1:2,连接AC,过点O作OP∥AB交AC的延长线于P.若P(1,1),则tan∠OAP的值是(  )

    A. B. C. D.3
    【解答】解:如图,过点P作PQ⊥x轴于点Q,
    ∵OP∥AB,
    ∴∠CAB=∠CPO,∠ABC=∠COP,
    ∴△OCP∽△BCA,
    ∴CP:AC=OC:BC=1:2,
    ∵∠AOC=∠AQP=90°,
    ∴CO∥PQ,
    ∴OQ:AO=CP:AC=1:2,
    ∵P(1,1),
    ∴PQ=OQ=1,
    ∴AO=2,
    ∴tan∠OAP===.
    故选:C.

    7.(2022•十堰)如图,坡角为α的斜坡上有一棵垂直于水平地面的大树AB,当太阳光线与水平线成45°角沿斜坡照下时,在斜坡上的树影BC长为m,则大树AB的高为(  )

    A.m(cosα﹣sinα) B.m(sinα﹣cosα)
    C.m(cosα﹣tanα) D.﹣
    【解答】解:过点C作水平地面的平行线,交AB的延长线于D,
    则∠BCD=α,
    在Rt△BCD中,BC=m,∠BCD=α,
    则BD=BC•sin∠BCD=msinα,CD=BC•cos∠BCD=mcosα,
    在Rt△ACD中,∠ACD=45°,
    则AD=CD=mcosα,
    ∴AB=AD﹣BD=mcosα﹣msinα=m(cosα﹣sinα),
    故选:A.

    8.(2022•随州)如图,已知点B,D,C在同一直线的水平地面上,在点C处测得建筑物AB的顶端A的仰角为α,在点D处测得建筑物AB的顶端A的仰角为β,若CD=α,则建筑物AB的高度为(  )

    A. B.
    C. D.
    【解答】解:设AB=x,
    在Rt△ABD中,tanβ=,
    ∴BD=,
    ∴BC=BD+CD=a+,
    在Rt△ABC中,tanα=,
    解得x=.
    故选:D.
    二.填空题(共10小题)
    9.(2022•黄石)某校数学兴趣小组开展“无人机测旗杆”的活动:已知无人机的飞行高度为30m,当无人机飞行至A处时,观测旗杆顶部的俯角为30°,继续飞行20m到达B处,测得旗杆顶部的俯角为60°,则旗杆的高度约为  12.7 m.
    (参考数据:≈1.732,结果按四舍五入保留一位小数)

    【解答】解:设旗杆底部为点C,顶部为点D,过点D作DE⊥AB,交直线AB于点E.

    则CE=30m,AB=20m,∠EAD=30°,∠EBD=60°,
    设DE=xm,
    在Rt△BDE中,tan60°=,
    解得BE=x,
    则AE=AB+BE=(20+x)m,
    在Rt△ADE中,tan30°==,
    解得x=≈17.3,
    经检验,x=≈17.3是原方程的解,且符合题意,
    ∴CD=CE﹣DE=12.7m.
    故答案为:12.7.
    10.(2022•荆门)计算:+cos60°﹣(﹣2022)0= ﹣1 .
    【解答】解:+cos60°﹣(﹣2022)0
    =﹣+﹣1
    =0﹣1
    =﹣1,
    故答案为:﹣1.
    11.(2022•荆门)如图,一艘海轮位于灯塔P的北偏东45°方向,距离灯塔100海里的A处,它沿正南方向以50海里/小时的速度航行t小时后,到达位于灯塔P的南偏东30°方向上的点B处,则t= (1+) 小时.

    【解答】解:如图:

    由题意得:
    ∠PAC=45°,∠PBA=30°,AP=100海里,
    在Rt△APC中,AC=AP•cos45°=100×=50(海里),
    PC=AP•sin45°=100×=50(海里),
    在Rt△BCP中,BC===50(海里),
    ∴AB=AC+BC=(50+50)海里,
    ∴t==(1+)小时,
    故答案为:(1+).

    12.(2022•柳州)如图,某水库堤坝横断面迎水坡的坡角为α,sinα=,堤坝高BC=30m,则迎水坡面AB的长度为  50 m.

    【解答】解:∵sinα=,堤坝高BC=30m,
    ∴sinα===,
    解得:AB=50.
    故答案为:50.
    13.(2022•河池)如图,把边长为1:2的矩形ABCD沿长边BC,AD的中点E,F对折,得到四边形ABEF,点G,H分别在BE,EF上,且BG=EH=BE=2,AG与BH交于点O,N为AF的中点,连接ON,作OM⊥ON交AB于点M,连接MN,则tan∠AMN=  .

    【解答】解:∵点E,F分别是BC,AD的中点,
    ∴AF=AD,BE=BC,
    ∵四边形ABCD是矩形,
    ∴∠A=90°,AD∥BC,AD=BC,
    ∴AF=BE=AD,
    ∴四边形ABEF是矩形,
    由题意知,AD=2AB,
    ∴AF=AB,
    ∴矩形ABEF是正方形,
    ∴AB=BE,∠ABE=∠BEF=90°,
    ∵BG=EH,
    ∴△ABG≌△BEH(SAS),
    ∴∠BAG=∠EBH,
    ∴∠BAG+∠ABO=∠EBH+∠ABO=∠ABG=90°,
    ∴∠AOB=90°,
    ∵BG=EH=BE=2,
    ∴BE=5,
    ∴AF=5,
    ∵∠OAB=∠BAG,∠AOB=∠ABG,
    ∴△AOB∽△ABG,
    ∴,
    ∴==,
    ∵OM⊥ON,
    ∴∠MON=90°=∠AOB,
    ∴∠BOM=∠AON,
    ∵∠BAG+∠FAG=90°,∠ABO+∠EBH=90°,∠BAG=∠EBH,
    ∴∠OBM=∠OAN,
    ∴△OBM∽△OAN,
    ∴,
    ∵点N是AF的中点,
    ∴AN=AF=,
    ∴=,
    ∴BM=1,
    ∴AM=AB﹣BM=4,
    在Rt△MAN中,tan∠AMN===,
    故答案为:.
    14.(2022•绥化)定义一种运算:
    sin(α+β)=sinαcosβ+cosαsinβ,
    sin(α﹣β)=sinαcosβ﹣cosαsinβ.
    例如:当α=45°,β=30°时,sin(45°+30°)=×+×=,则sin15°的值为   .
    【解答】解:sin15°=sin(45°﹣30°)
    =sin45°cos30°﹣cos45°sin30°
    =×﹣×
    =﹣
    =.
    故答案为:.
    15.(2022•齐齐哈尔)在△ABC中,AB=3,AC=6,∠B=45°,则BC= 3+3或3﹣3 .
    【解答】解:①当△ABC为锐角三角形时,
    过点A作AD⊥BC于点D,如图,

    ∵AB=3,∠B=45°,
    ∴AD=BD=AB•sin45°=3,
    ∴CD==3,
    ∴BC=BD+CD=3+3;
    ②当△ABC为钝角三角形时,
    过点A作AD⊥BC交BC延长线于点D,如图,

    ∵AB=3,∠B=45°,
    ∴AD=BD=AB•sin45°=3,
    ∴CD==3,
    ∴BC=BD﹣CD=3﹣3;
    综上,BC的长为3+3或3﹣3.
    16.(2022•桂林)如图,某雕塑MN位于河段OA上,游客P在步道上由点O出发沿OB方向行走.已知∠AOB=30°,MN=2OM=40m,当观景视角∠MPN最大时,游客P行走的距离OP是  20 米.

    【解答】解:如图,取MN的中点F,过点F作FE⊥OB于E,以直径MN作⊙F,

    ∵MN=2OM=40m,点F是MN的中点,
    ∴MF=FN=20m,OF=40m,
    ∵∠AOB=30°,EF⊥OB,
    ∴EF=20m,OE=EF=20m,
    ∴EF=MF,
    又∵EF⊥OB,
    ∴OB是⊙F的切线,切点为E,
    ∴当点P与点E重合时,观景视角∠MPN最大,
    此时OP=20m,
    故答案为:20.
    17.(2022•湖北)如图,有甲乙两座建筑物,从甲建筑物A点处测得乙建筑物D点的俯角α为45°,C点的俯角β为58°,BC为两座建筑物的水平距离.已知乙建筑物的高度CD为6m,则甲建筑物的高度AB为  16 m.
    (sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,结果保留整数).

    【解答】解:过点D作DE⊥AB于点E,如图.

    则BE=CD=6m,∠ADE=45°,∠ACB=58°,
    在Rt△ADE中,∠ADE=45°,
    设AE=xm,则DE=xm,
    ∴BC=xm,AB=AE+BE=(6+x)m,
    在Rt△ABC中,
    tan∠ACB=tan58°=≈1.60,
    解得x=10,
    ∴AB=16m.
    故答案为:16.
    18.(2022•武汉)如图,沿AB方向架桥修路,为加快施工进度,在直线AB上湖的另一边的D处同时施工.取∠ABC=150°,BC=1600m,∠BCD=105°,则C,D两点的距离是  800 m.

    【解答】解:过点C作CE⊥BD,垂足为E.
    ∵∠ABC=150°,
    ∴∠DBC=30°.
    在Rt△BCE中,
    ∵BC=1600m,
    ∴CE=BC=800m,∠BCE=60°.
    ∵∠BCD=105°,
    ∴∠ECD=45°.
    在Rt△DCE中,
    ∵cos∠ECD=,
    ∴CD=

    =800(m).
    故答案为:800.


    相关试卷

    第28章+锐角三角形解答题培优练习-2022—2023学年人教版九年级数学下册:

    这是一份第28章+锐角三角形解答题培优练习-2022—2023学年人教版九年级数学下册,共19页。试卷主要包含了÷,其中x=cs30°,﹣2﹣tan60°;,﹣2+|﹣2|+tan60°;等内容,欢迎下载使用。

    第27章相似培优练习-2022—2023学年人教版九年级数学下册:

    这是一份第27章相似培优练习-2022—2023学年人教版九年级数学下册,共18页。试卷主要包含了,y与t的函数图象如图2所示等内容,欢迎下载使用。

    第28章+锐角三角形-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州):

    这是一份第28章+锐角三角形-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州),共28页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map