第28章+锐角三角形选择、填空培优练习-2022—2023学年人教版九年级数学下册
展开
这是一份第28章+锐角三角形选择、填空培优练习-2022—2023学年人教版九年级数学下册,共19页。试卷主要包含了0= 等内容,欢迎下载使用。
第28章 锐角三角形选择、填空培优练习-2022—2023学年人教版九年级数学下册
一.选择题(共8小题)
1.(2022•贵港)如图,在4×4网格正方形中,每个小正方形的边长为1,顶点为格点,若△ABC的顶点均是格点,则cos∠BAC的值是( )
A. B. C. D.
2.(2022•贵港)如图,某数学兴趣小组测量一棵树CD的高度,在点A处测得树顶C的仰角为45°,在点B处测得树顶C的仰角为60°,且A,B,D三点在同一直线上,若AB=16m,则这棵树CD的高度是( )
A.8(3﹣)m B.8(3+)m C.6(3﹣)m D.6(3+)m
3.(2022•黑龙江)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,山高为( )米
A.600﹣250 B.600﹣250 C.350+350 D.500
4.(2022•广西)如图,某博物馆大厅电梯的截面图中,AB的长为12米,AB与AC的夹角为α,则高BC是( )
A.12sinα米 B.12cosα米 C.米 D.米
5.(2022•玉林)如图,从热气球A看一栋楼底部C的俯角是( )
A.∠BAD B.∠ACB C.∠BAC D.∠DAC
6.(2022•荆州)如图,在平面直角坐标系中,点A,B分别在x轴负半轴和y轴正半轴上,点C在OB上,OC:BC=1:2,连接AC,过点O作OP∥AB交AC的延长线于P.若P(1,1),则tan∠OAP的值是( )
A. B. C. D.3
7.(2022•十堰)如图,坡角为α的斜坡上有一棵垂直于水平地面的大树AB,当太阳光线与水平线成45°角沿斜坡照下时,在斜坡上的树影BC长为m,则大树AB的高为( )
A.m(cosα﹣sinα) B.m(sinα﹣cosα)
C.m(cosα﹣tanα) D.﹣
8.(2022•随州)如图,已知点B,D,C在同一直线的水平地面上,在点C处测得建筑物AB的顶端A的仰角为α,在点D处测得建筑物AB的顶端A的仰角为β,若CD=α,则建筑物AB的高度为( )
A. B.
C. D.
二.填空题(共10小题)
9.(2022•黄石)某校数学兴趣小组开展“无人机测旗杆”的活动:已知无人机的飞行高度为30m,当无人机飞行至A处时,观测旗杆顶部的俯角为30°,继续飞行20m到达B处,测得旗杆顶部的俯角为60°,则旗杆的高度约为 m.
(参考数据:≈1.732,结果按四舍五入保留一位小数)
10.(2022•荆门)计算:+cos60°﹣(﹣2022)0= .
11.(2022•荆门)如图,一艘海轮位于灯塔P的北偏东45°方向,距离灯塔100海里的A处,它沿正南方向以50海里/小时的速度航行t小时后,到达位于灯塔P的南偏东30°方向上的点B处,则t= 小时.
12.(2022•柳州)如图,某水库堤坝横断面迎水坡的坡角为α,sinα=,堤坝高BC=30m,则迎水坡面AB的长度为 m.
13.(2022•河池)如图,把边长为1:2的矩形ABCD沿长边BC,AD的中点E,F对折,得到四边形ABEF,点G,H分别在BE,EF上,且BG=EH=BE=2,AG与BH交于点O,N为AF的中点,连接ON,作OM⊥ON交AB于点M,连接MN,则tan∠AMN= .
14.(2022•绥化)定义一种运算:
sin(α+β)=sinαcosβ+cosαsinβ,
sin(α﹣β)=sinαcosβ﹣cosαsinβ.
例如:当α=45°,β=30°时,sin(45°+30°)=×+×=,则sin15°的值为 .
15.(2022•齐齐哈尔)在△ABC中,AB=3,AC=6,∠B=45°,则BC= .
16.(2022•桂林)如图,某雕塑MN位于河段OA上,游客P在步道上由点O出发沿OB方向行走.已知∠AOB=30°,MN=2OM=40m,当观景视角∠MPN最大时,游客P行走的距离OP是 米.
17.(2022•湖北)如图,有甲乙两座建筑物,从甲建筑物A点处测得乙建筑物D点的俯角α为45°,C点的俯角β为58°,BC为两座建筑物的水平距离.已知乙建筑物的高度CD为6m,则甲建筑物的高度AB为 m.
(sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,结果保留整数).
18.(2022•武汉)如图,沿AB方向架桥修路,为加快施工进度,在直线AB上湖的另一边的D处同时施工.取∠ABC=150°,BC=1600m,∠BCD=105°,则C,D两点的距离是 m.
第28章 锐角三角形选择、填空培优练习-2022—2023学年人教版九年级数学下册
参考答案与试题解析
一.选择题(共8小题)
1.(2022•贵港)如图,在4×4网格正方形中,每个小正方形的边长为1,顶点为格点,若△ABC的顶点均是格点,则cos∠BAC的值是( )
A. B. C. D.
【解答】解:延长AC到D,连接BD,如图:
∵AD2=20,BD2=5,AB2=25,
∴AD2+BD2=AB2,
∴∠ADB=90°,
∴cos∠BAC===,
故选:C.
2.(2022•贵港)如图,某数学兴趣小组测量一棵树CD的高度,在点A处测得树顶C的仰角为45°,在点B处测得树顶C的仰角为60°,且A,B,D三点在同一直线上,若AB=16m,则这棵树CD的高度是( )
A.8(3﹣)m B.8(3+)m C.6(3﹣)m D.6(3+)m
【解答】解:设AD=x米,
∵AB=16米,
∴BD=AB﹣AD=(16﹣x)米,
在Rt△ADC中,∠A=45°,
∴CD=AD•tan45°=x(米),
在Rt△CDB中,∠B=60°,
∴tan60°===,
∴x=24﹣8,
经检验:x=24﹣8是原方程的根,
∴CD=24﹣8=8(3﹣))米,
∴这棵树CD的高度是8(3﹣)米,
故选:A.
3.(2022•黑龙江)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,山高为( )米
A.600﹣250 B.600﹣250 C.350+350 D.500
【解答】解:设EF=5x米,
∵斜坡BE的坡度为5:12,
∴BF=12x米,
由勾股定理得:(5x)2+(12x)2=(1300)2,
解得:x=100,
则EF=500米,BF=1200米,
由题意可知,四边形DCFE为矩形,
∴DC=EF=500米,DE=CF,
在Rt△ADE中,tan∠AED=,
则DE==AD,
在Rt△ACB中,tan∠ABC=,
∴=,
解得:AD=600﹣750,
∴山高AC=AD+DC=600﹣750+500=(600﹣250)米,
故选:B.
4.(2022•广西)如图,某博物馆大厅电梯的截面图中,AB的长为12米,AB与AC的夹角为α,则高BC是( )
A.12sinα米 B.12cosα米 C.米 D.米
【解答】解:Rt△ABC中,sinα=,
∵AB=12米,
∴BC=12sinα(米).
故选:A.
5.(2022•玉林)如图,从热气球A看一栋楼底部C的俯角是( )
A.∠BAD B.∠ACB C.∠BAC D.∠DAC
【解答】解:从热气球A看一栋楼底部C的俯角是∠DAC.
故选:D.
6.(2022•荆州)如图,在平面直角坐标系中,点A,B分别在x轴负半轴和y轴正半轴上,点C在OB上,OC:BC=1:2,连接AC,过点O作OP∥AB交AC的延长线于P.若P(1,1),则tan∠OAP的值是( )
A. B. C. D.3
【解答】解:如图,过点P作PQ⊥x轴于点Q,
∵OP∥AB,
∴∠CAB=∠CPO,∠ABC=∠COP,
∴△OCP∽△BCA,
∴CP:AC=OC:BC=1:2,
∵∠AOC=∠AQP=90°,
∴CO∥PQ,
∴OQ:AO=CP:AC=1:2,
∵P(1,1),
∴PQ=OQ=1,
∴AO=2,
∴tan∠OAP===.
故选:C.
7.(2022•十堰)如图,坡角为α的斜坡上有一棵垂直于水平地面的大树AB,当太阳光线与水平线成45°角沿斜坡照下时,在斜坡上的树影BC长为m,则大树AB的高为( )
A.m(cosα﹣sinα) B.m(sinα﹣cosα)
C.m(cosα﹣tanα) D.﹣
【解答】解:过点C作水平地面的平行线,交AB的延长线于D,
则∠BCD=α,
在Rt△BCD中,BC=m,∠BCD=α,
则BD=BC•sin∠BCD=msinα,CD=BC•cos∠BCD=mcosα,
在Rt△ACD中,∠ACD=45°,
则AD=CD=mcosα,
∴AB=AD﹣BD=mcosα﹣msinα=m(cosα﹣sinα),
故选:A.
8.(2022•随州)如图,已知点B,D,C在同一直线的水平地面上,在点C处测得建筑物AB的顶端A的仰角为α,在点D处测得建筑物AB的顶端A的仰角为β,若CD=α,则建筑物AB的高度为( )
A. B.
C. D.
【解答】解:设AB=x,
在Rt△ABD中,tanβ=,
∴BD=,
∴BC=BD+CD=a+,
在Rt△ABC中,tanα=,
解得x=.
故选:D.
二.填空题(共10小题)
9.(2022•黄石)某校数学兴趣小组开展“无人机测旗杆”的活动:已知无人机的飞行高度为30m,当无人机飞行至A处时,观测旗杆顶部的俯角为30°,继续飞行20m到达B处,测得旗杆顶部的俯角为60°,则旗杆的高度约为 12.7 m.
(参考数据:≈1.732,结果按四舍五入保留一位小数)
【解答】解:设旗杆底部为点C,顶部为点D,过点D作DE⊥AB,交直线AB于点E.
则CE=30m,AB=20m,∠EAD=30°,∠EBD=60°,
设DE=xm,
在Rt△BDE中,tan60°=,
解得BE=x,
则AE=AB+BE=(20+x)m,
在Rt△ADE中,tan30°==,
解得x=≈17.3,
经检验,x=≈17.3是原方程的解,且符合题意,
∴CD=CE﹣DE=12.7m.
故答案为:12.7.
10.(2022•荆门)计算:+cos60°﹣(﹣2022)0= ﹣1 .
【解答】解:+cos60°﹣(﹣2022)0
=﹣+﹣1
=0﹣1
=﹣1,
故答案为:﹣1.
11.(2022•荆门)如图,一艘海轮位于灯塔P的北偏东45°方向,距离灯塔100海里的A处,它沿正南方向以50海里/小时的速度航行t小时后,到达位于灯塔P的南偏东30°方向上的点B处,则t= (1+) 小时.
【解答】解:如图:
由题意得:
∠PAC=45°,∠PBA=30°,AP=100海里,
在Rt△APC中,AC=AP•cos45°=100×=50(海里),
PC=AP•sin45°=100×=50(海里),
在Rt△BCP中,BC===50(海里),
∴AB=AC+BC=(50+50)海里,
∴t==(1+)小时,
故答案为:(1+).
12.(2022•柳州)如图,某水库堤坝横断面迎水坡的坡角为α,sinα=,堤坝高BC=30m,则迎水坡面AB的长度为 50 m.
【解答】解:∵sinα=,堤坝高BC=30m,
∴sinα===,
解得:AB=50.
故答案为:50.
13.(2022•河池)如图,把边长为1:2的矩形ABCD沿长边BC,AD的中点E,F对折,得到四边形ABEF,点G,H分别在BE,EF上,且BG=EH=BE=2,AG与BH交于点O,N为AF的中点,连接ON,作OM⊥ON交AB于点M,连接MN,则tan∠AMN= .
【解答】解:∵点E,F分别是BC,AD的中点,
∴AF=AD,BE=BC,
∵四边形ABCD是矩形,
∴∠A=90°,AD∥BC,AD=BC,
∴AF=BE=AD,
∴四边形ABEF是矩形,
由题意知,AD=2AB,
∴AF=AB,
∴矩形ABEF是正方形,
∴AB=BE,∠ABE=∠BEF=90°,
∵BG=EH,
∴△ABG≌△BEH(SAS),
∴∠BAG=∠EBH,
∴∠BAG+∠ABO=∠EBH+∠ABO=∠ABG=90°,
∴∠AOB=90°,
∵BG=EH=BE=2,
∴BE=5,
∴AF=5,
∵∠OAB=∠BAG,∠AOB=∠ABG,
∴△AOB∽△ABG,
∴,
∴==,
∵OM⊥ON,
∴∠MON=90°=∠AOB,
∴∠BOM=∠AON,
∵∠BAG+∠FAG=90°,∠ABO+∠EBH=90°,∠BAG=∠EBH,
∴∠OBM=∠OAN,
∴△OBM∽△OAN,
∴,
∵点N是AF的中点,
∴AN=AF=,
∴=,
∴BM=1,
∴AM=AB﹣BM=4,
在Rt△MAN中,tan∠AMN===,
故答案为:.
14.(2022•绥化)定义一种运算:
sin(α+β)=sinαcosβ+cosαsinβ,
sin(α﹣β)=sinαcosβ﹣cosαsinβ.
例如:当α=45°,β=30°时,sin(45°+30°)=×+×=,则sin15°的值为 .
【解答】解:sin15°=sin(45°﹣30°)
=sin45°cos30°﹣cos45°sin30°
=×﹣×
=﹣
=.
故答案为:.
15.(2022•齐齐哈尔)在△ABC中,AB=3,AC=6,∠B=45°,则BC= 3+3或3﹣3 .
【解答】解:①当△ABC为锐角三角形时,
过点A作AD⊥BC于点D,如图,
∵AB=3,∠B=45°,
∴AD=BD=AB•sin45°=3,
∴CD==3,
∴BC=BD+CD=3+3;
②当△ABC为钝角三角形时,
过点A作AD⊥BC交BC延长线于点D,如图,
∵AB=3,∠B=45°,
∴AD=BD=AB•sin45°=3,
∴CD==3,
∴BC=BD﹣CD=3﹣3;
综上,BC的长为3+3或3﹣3.
16.(2022•桂林)如图,某雕塑MN位于河段OA上,游客P在步道上由点O出发沿OB方向行走.已知∠AOB=30°,MN=2OM=40m,当观景视角∠MPN最大时,游客P行走的距离OP是 20 米.
【解答】解:如图,取MN的中点F,过点F作FE⊥OB于E,以直径MN作⊙F,
∵MN=2OM=40m,点F是MN的中点,
∴MF=FN=20m,OF=40m,
∵∠AOB=30°,EF⊥OB,
∴EF=20m,OE=EF=20m,
∴EF=MF,
又∵EF⊥OB,
∴OB是⊙F的切线,切点为E,
∴当点P与点E重合时,观景视角∠MPN最大,
此时OP=20m,
故答案为:20.
17.(2022•湖北)如图,有甲乙两座建筑物,从甲建筑物A点处测得乙建筑物D点的俯角α为45°,C点的俯角β为58°,BC为两座建筑物的水平距离.已知乙建筑物的高度CD为6m,则甲建筑物的高度AB为 16 m.
(sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,结果保留整数).
【解答】解:过点D作DE⊥AB于点E,如图.
则BE=CD=6m,∠ADE=45°,∠ACB=58°,
在Rt△ADE中,∠ADE=45°,
设AE=xm,则DE=xm,
∴BC=xm,AB=AE+BE=(6+x)m,
在Rt△ABC中,
tan∠ACB=tan58°=≈1.60,
解得x=10,
∴AB=16m.
故答案为:16.
18.(2022•武汉)如图,沿AB方向架桥修路,为加快施工进度,在直线AB上湖的另一边的D处同时施工.取∠ABC=150°,BC=1600m,∠BCD=105°,则C,D两点的距离是 800 m.
【解答】解:过点C作CE⊥BD,垂足为E.
∵∠ABC=150°,
∴∠DBC=30°.
在Rt△BCE中,
∵BC=1600m,
∴CE=BC=800m,∠BCE=60°.
∵∠BCD=105°,
∴∠ECD=45°.
在Rt△DCE中,
∵cos∠ECD=,
∴CD=
=
=800(m).
故答案为:800.
相关试卷
这是一份第28章+锐角三角形解答题培优练习-2022—2023学年人教版九年级数学下册,共19页。试卷主要包含了÷,其中x=cs30°,﹣2﹣tan60°;,﹣2+|﹣2|+tan60°;等内容,欢迎下载使用。
这是一份第27章相似培优练习-2022—2023学年人教版九年级数学下册,共18页。试卷主要包含了,y与t的函数图象如图2所示等内容,欢迎下载使用。
这是一份第28章+锐角三角形-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州),共28页。