搜索
    上传资料 赚现金
    英语朗读宝

    2022-2023学年福建省厦门市湖滨中学高一上学期期中考试数学试题含解析

    2022-2023学年福建省厦门市湖滨中学高一上学期期中考试数学试题含解析第1页
    2022-2023学年福建省厦门市湖滨中学高一上学期期中考试数学试题含解析第2页
    2022-2023学年福建省厦门市湖滨中学高一上学期期中考试数学试题含解析第3页
    还剩10页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022-2023学年福建省厦门市湖滨中学高一上学期期中考试数学试题含解析

    展开

    这是一份2022-2023学年福建省厦门市湖滨中学高一上学期期中考试数学试题含解析,共13页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
    2022-2023学年福建省厦门市湖滨中学高一上学期期中考试数学试题 一、单选题1.已知全集,集合,则图中的阴影部分表示的集合为(    A B C D【答案】B【分析】阴影部分表示的集合为,求出后可求此集合.【详解】因为,故,而又阴影部分表示的集合为,故阴影部分表示的集合为故选:B.2.命题的否定是(    A BC D【答案】C【分析】将特称命题否定为全称命题即可.【详解】命题的否定是故选:C3.已知幂函数的图象经过点,则    A B C D【答案】A【分析】根据幂函数的概念求出,再代入点的坐标可求出,即可得解.【详解】因为函数为幂函数,所以,则又因为的图象经过点,所以,得所以.故选:A4.已知函数,则的值为(    A6 B5 C1 D0【答案】A【分析】根据题意,由函数的解析式求出的值,相加即可得答案.【详解】根据题意,函数故选:A5.已知奇函数,当时,m为常数),则    A1 B2 C D【答案】C【分析】利用求得,然后结合函数的奇偶性求得.【详解】依题意是奇函数,由于时,所以所以时,所以.故选:C6.不等式的解集为,则函数的图像大致为(    A BC D【答案】C【分析】根据题意,可得方程的两个根为,且,结合二次方程根与系数的关系得到的关系,再结合二次函数的性质判断即可.【详解】根据题意,的解集为,则方程的两个根为,且.则有,变形可得故函数是开口向下的二次函数,且与轴的交点坐标为.对照四个选项,只有C符合.故选:C7.某金店用一杆不准确的天平(两边臂不等长)称黄金,某顾客要购买黄金,售货员先将的砝码放在左盘,将黄金放于右盘使之平衡后给顾客;然后又将的砝码放入右盘,将另一黄金放于左盘使之平衡后又给顾客,则顾客实际所得黄金(    A.大于 B.小于 C.等于 D.以上都有可能【答案】A【分析】根据杠杆原理以及基本不等式即可求解.【详解】由于天平两边臂不相等,故可设天平左臂长为a,右臂长为b(不妨设),第一次称出的黄金重为,第二次称出的黄金重为由杠杠平衡原理可得,,所以,这样可知称出的黄金大于.故选:A8.已知函数上的偶函数,对任意,均有成立,若,则的大小关系是(    A BC D【答案】C【分析】由题知函数上单调递增,,再结合可得答案.【详解】解:因为对任意,均有成立,所以函数上单调递减,因为函数上的偶函数,所以,函数上单调递增,因为所以所以,即.故选:C 二、多选题9.设集合,则(    A B C D【答案】AD【分析】根据集合的交并补运算以及子集关系即可求解.【详解】,所以故选:AD10.已知关于的不等式的解集为,则下列说法正确的是(    A B.不等式的解集为C D.不等式的解集为【答案】BD【分析】由一元二次不等式的解集得到一元二次方程的解,由韦达定理得到的关系式,且,从而判断A错误,解不等式得到BD正确,由得到C错误.【详解】由题意得:的解为-23,且所以,解得:所以A错误,,即,解得:B正确;C错误;变形为,不等式除以得:解得:D正确.故选:BD11.已知函数,则使x是(    A4 B1 C D【答案】AD【分析】根据题意,结合函数的解析式分两种情况讨论:当时,,当时,,求出符合要求的x的值,即可得答案.【详解】根据题意,函数时,,则有,不合要求,舍去时,,解得:,均满足要求.故选:AD12.已知函数的图象经过原点,且无限接近直线y2,但又不与该直线相交,则下列说法正确的是(    A B.若,且,则C.若,则 D的值域为【答案】ABD【分析】根据题意,由指数函数的性质分析的值,即可得函数的解析式,根据函数的奇偶性以及单调性即可对选项逐一求解.【详解】函数的图像过原点,,即的图像无限接近直线,但又不与该直线相交,,故A确;由于为偶函数,故若,且,则,即,故B确,由于在上,单调递减,故若,则,故C错误,由于,故D确;故选:ABD 三、填空题13.已知幂函数的图象过点,则______【答案】3【分析】先利用待定系数法代入点的坐标,求出幂函数的解析式,再求的值.【详解】,由于图象过点,,故答案为3.【点睛】本题考查幂函数的解析式,以及根据解析式求函数值,意在考查对基础知识的掌握与应用,属于基础题.14____________【答案】4【分析】利用指对数的运算性质化简求值即可.【详解】原式.故答案为:415.已知函数,当时,取最小值,则____________.【答案】【分析】利用基本不等式及其取等条件可求得,加和可得结果.【详解】时,(当且仅当,即时取等号),.故答案为:.16.函数上单调递减的一个充分不必要条件是______.(只要写出一个符合条件的即可)【答案】(答案不唯一)【分析】利用分段函数整体单调递减,分段也是单调递减可求出,从而函数在上单调递减的一个充分不必要条件是的非空真子集.【详解】因为上单调递减,所以,解得,所以答案为的非空真子集.故答案为:(或的任一非空真子集都可以) 四、解答题17.已知(1)的定义域、并判断函数的奇偶性;(2)求使的取值范围.【答案】(1)定义域为为奇函数;(2). 【分析】1)根据对数函数的定义域可得解出范围即可,判别函数奇偶性,先看定义域关于原点对称,然后计算,得到,所以为奇函数;2)由得到,解不等式,注意定义域范围即可.【详解】1)由题意得,即,解得所以定义域为因为定义域为,关于原点对称,,所以是奇函数.2综上的取值范围为.18.已知集合.(1),求(2)给出以下两个条件:③“的充分条件.在以上三个条件中任选一个,补充到横线处,求解下列问题:___________,求实数a的取值范围.【答案】(1)(2) 【分析】1)根据并集的定义,求解即可;2)选择①②③,都有,分两种情况讨论,列出不等关系,求解即可.【详解】1)当时,集合所以2)选择①②③,都有因为时,,解得,又所以,解得所以实数a的取值范围是.19.某种杂志原以每本2.5元的价格销售,可以售出8万本,据市场调查,杂志的单价每提高0.1元,销售量就可能减少2000本,若提价后定价为x(单位:元),销售总收入y(单位:万元)(1)提价后如何定价才能使销售总收入最大?销售总收入最大值是多少?(精确到0.1(2)如何定价才能使提价后的销售总收入不低于20万元?【答案】(1)定价为每本元可使销售总收入最大,销售总收入最大值约为万元(2)每本杂志的定价不低于元且不超过4 【分析】(1) 若提价后定价为x,则可售出万件,总收入与售价函数关系为二次函数,利用二次函数求最值.(2) 由销售总收入不低于20万元列出不等式,解二次不等式.【详解】1)由题意可得(元)时,(万元).即定价为每本元可使销售总收入最大,销售总收入最大值约为万元.2)由题意可得所以,当每本杂志的定价不低于元且不超过4元时,提价后的销售总收入不低于20万元.20.函数是定义在上的奇函数,且(1)确定的解析式;(2)判断上的单调性,并用定义证明.【答案】(1)(2)增函数,证明见解析 【分析】1)由题知,进而求得答案(注意检验奇函数成立);2)根据函数单调性的定义证明即可;【详解】1)解:因为函数是定义在上的奇函数所以,解得经检验,当时,上的奇函数,满足题意.,解得所以2)解:上为增函数.证明如下:内任取因为所以,即所以上为增函数.21.设函数(1)若不等式的解集,求的值;(2),求的最小值及此时的值;上恒成立,求实数的取值范围.【答案】(1)(2)①最小值为,此时 【分析】1)根据一元二次不等式的解集和一元二次方程的根之间关系,利用韦达定理可构造方程组求得结果;2可得,根据,利用基本不等式可求得最小值,并由取等条件确定此时的值;将恒成立的不等式化为,根据根据一元二次不等式在上恒成立的思想可直接构造不等式组求得结果.【详解】1的解集为为方程的两根且,解得:.2,又(当且仅当,即时取等号),的最小值为,此时知:;由知:恒成立,解得:,即实数的取值范围为.22.已知定义在R上的函数满足(1)的解析式;(2)若不等式恒成立,求实数a取值范围;(3),若对任意的,存在,使得,求实数m取值范围.【答案】(1)(2)(3) 【分析】1)根据,代入计算可得;2)根据单调性得,分离参数求最值即可.3)因为对任意的,存在,使得,等价于,先求的最小值,再分类讨论对称轴与区间的位置关系,使的最小值满足小于等于1的条件,求解即可.【详解】1)由题意知,,所以.2)由(1)知,所以R上单调递增,所以不等式恒成立等价于恒成立.,则,当且仅当,即时取等号,所以故实数a的取值范围是.3)因为对任意的,存在,使得所以上的最小值不小于上的最小值,因为上单调递增,所以当时,的对称轴为时,上单调递增,,解得所以时,上单调递减,在上单调递增,,解得,所以时,上单调递减,,解得所以综上可知,实数m的取值范围是. 

    相关试卷

    2022-2023学年福建省厦门市湖滨中学高二上学期期中考试数学试题-普通用卷:

    这是一份2022-2023学年福建省厦门市湖滨中学高二上学期期中考试数学试题-普通用卷,共13页。试卷主要包含了已知F是椭圆C,已知圆C等内容,欢迎下载使用。

    2022-2023学年福建省厦门市湖滨中学高一下学期期中考试数学试题含解析:

    这是一份2022-2023学年福建省厦门市湖滨中学高一下学期期中考试数学试题含解析,共18页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年福建省厦门市湖滨中学高二下学期期中考试数学试题含解析:

    这是一份2022-2023学年福建省厦门市湖滨中学高二下学期期中考试数学试题含解析,共14页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map