2023年高考政治第二次模拟考试卷—数学(广东A卷)(考试版)A4
展开2023年高考数学第二次模拟考试卷
高三数学
(考试时间:120分钟 试卷满分:150分)
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如
需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写
在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回
第Ⅰ卷
一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.集合,,,则( )
A. B. C. D.
2.已知是关于的方程的一个根,则复数在复平面内对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.如图是下列四个函数中的某个函数在区间上的大致图象,则该函数是( )
A. B.
C. D.
4.安排5名大学生到三家企业实习,每名大学生只去一家企业,每家企业至少安排1名大学生,则大学生甲、乙到同一家企业实习的概率为( )
A. B. C. D.
5.以抛物线的焦点F为端点的射线与C及C的准线l分别交于A,B两点,过B且平行于x轴的直线交C于点P,过A且平行于x轴的直线交l于点Q,且,则△PBF的周长为( )
A.16 B.12 C.10 D.6
6.函数的定义域为,为奇函数,且的图像关于对称.若曲线在处的切线斜率为,则曲线在处的切线方程为( )
A. B.
C. D.
7.如图所示,已知正四棱柱的上下底面的边长为3,高为4,点M,N分别在线段和上,且满足,下底面ABCD的中心为点O,点P,Q分别为线段和MN上的动点,则的最小值为( )
A. B. C. D.
8.十七世纪法国数学家、被誉为业余数学家之王的皮埃尔·德·费马提出的一个著名的几何问题:“已知一个三角形,求作一点,使其与这个三角形的三个顶点的距离之和最小”它的答案是:当三角形的三个角均小于120°时,所求的点为三角形的正等角中心,即该点与三角形的三个顶点的连线两两成角;当三角形有一内角大于或等于时,所求点为三角形最大内角的顶点.在费马问题中所求的点称为费马点.已知分别是三个内角的对边,且,,若点P为的费马点,则( )
A. B. C. D.
二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。
9.已知直线:,:,圆C:,若圆C与直线,都相切,则下列选项一定正确的是( )
A.与关于直线对称
B.若圆C的圆心在x轴上,则圆C的半径为3或9
C.圆C的圆心在直线或直线上
D.与两坐标轴都相切的圆C有且只有2个
10.已知是的导函数,,则下列结论正确的为( )
A.与的图像关于直线对称
B.与有相同的最大值
C.将图像上所有的点向右平移个单位长度可得的图像
D.当时,与都在区间上单调递增
11.如图,正方体的棱长为3,点是侧面上的一个动点(含边界),点在棱上,且,则下列结论正确的有( )
A.沿正方体的表面从点到点的最短路程为
B.保持与垂直时,点的运动轨迹长度为
C.若保持,则点的运动轨迹长度为
D.当在点时,三棱锥的外接球表面积为
12.学校食堂每天中都会提供两种套餐供学生选择(学生只能选择其中的一种),经过统计分析发现:学生第一天选择套餐的概率为,选择套餐的概率为.而前一天选择了套餐的学生第二天诜择套餐的概率为,选择套餐的概率为;前一天选择套餐的学生第一天选择套餐的概率为,选择套餐的概率也是,如此往复.记某同学第天选择套餐的概率为,选择套餐的概率为.一个月(30天)后,记甲、乙、丙3位同学选择套餐的人数为,则下列说法正确的是( )
A. B.数列是等比数列
C. D.
第Ⅱ卷
三、填空题:本题共4小题,每小题5分,共20分。
13.随机变量,,则实数a的值为______.
14.在等比数列中,,记数列的前项和、前项积分别为,则的最大值是______.
15.已知函数,则不等式的解集为__________.
16.已知双曲线E:的左、右焦点分别为、,若E上存在点P,满足,(O为坐标原点),且的内切圆的半径等于a,则E的离心率为____________.
四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步棸。
17.(10分)
已知的角,,的对边分别为,,,且,
(1)求角;
(2)若平分交线段于点,且,,求的周长.
18.(12分)
已知数列满足.记的前n项和为.
(1)求;
(2)设,若表示不小于x的最小整数,如,试判断是否存在正整数n,使得?若存在,求出n的取值集合;若不存在,请说出理由.
19.(12分)
已知在长方形中,,点是的中点,沿折起平面,使平面平面.
(1)求证:在四棱锥中,;
(2)若在线段上存在点,使二面角的余弦值为,求的值;
(3)在(2)的条件下,求点到平面的距离.
20.(12分)
有研究显示,人体内某部位的直径约的结节约有0.2%的可能性会在1年内发展为恶性肿瘤.某医院引进一台检测设备,可以通过无创的血液检测,估计患者体内直径约的结节是否会在1年内发展为恶性肿瘤,若检测结果为阳性,则提示该结节会在1年内发展为恶性肿瘤,若检测结果为阴性,则提示该结节不会在1年内发展为恶性肿瘤.这种检测的准确率为85%,即一个会在1年内发展为恶性肿瘤的患者有85%的可能性被检出阳性,一个不会在1年内发展为恶性肿瘤的患者有85%的可能性被检出阴性.患者甲被检查出体内长了一个直径约的结节,他做了该项无创血液检测.
(1)求患者甲检查结果为阴性的概率;
(2)若患者甲的检查结果为阴性,求他的这个结节在1年内发展为恶性肿瘤的概率(结果保留5位小数);
(3)医院为每位参加该项检查的患者缴纳200元保险费,对于检测结果为阴性,但在1年内发展为恶性肿瘤的患者,保险公司赔付该患者20万元,若每年缴纳保险费的患者有1000人,请估计保险公司每年在这个项目上的收益.
21.(12分)
定义:一般地,当且时,我们把方程表示的椭圆称为椭圆的相似椭圆.已知椭圆,椭圆(且)是椭圆的相似椭圆,点为椭圆上异于其左、右顶点的任意一点.
(1)当时,若与椭圆有且只有一个公共点的直线恰好相交于点,直线的斜率分别为,求的值;
(2)当(e为椭圆的离心率)时,设直线与椭圆交于点,直线与椭圆交于点,求的值.
22.(12分)
已知函数.
(1)讨论的单调性;
(2)设,若,且对任意恒成立,求实数的取值范围.
2023年高考政治第二次模拟考试卷—数学(天津A卷)(考试版)A4: 这是一份2023年高考政治第二次模拟考试卷—数学(天津A卷)(考试版)A4,共7页。试卷主要包含了本试卷分第Ⅰ卷两部分,设,,若,则的最小值为,是虚数单位,复数 等内容,欢迎下载使用。
2023年高考政治第二次模拟考试卷—数学(天津B卷)(考试版)A4: 这是一份2023年高考政治第二次模拟考试卷—数学(天津B卷)(考试版)A4,共9页。试卷主要包含了本试卷分第Ⅰ卷两部分,已知,,,则,蹴鞠,复数______等内容,欢迎下载使用。
2023年高考政治第二次模拟考试卷—数学(新高考Ⅱ卷A卷)(考试版)A4: 这是一份2023年高考政治第二次模拟考试卷—数学(新高考Ⅱ卷A卷)(考试版)A4,共7页。试卷主要包含了若,则,二项式展开式中的系数为,已知函数,已知是双曲线,下面命题中,正确的有,函数,以下正确的是等内容,欢迎下载使用。