


电磁场压轴解答题(全国甲卷和Ⅰ卷)-2023年高考物理十年压轴真题题型解读与模拟预测(解析版)
展开
这是一份电磁场压轴解答题(全国甲卷和Ⅰ卷)-2023年高考物理十年压轴真题题型解读与模拟预测(解析版),共41页。试卷主要包含了带电粒子在有界磁场的运动,带电粒子的组合场等内容,欢迎下载使用。
电磁场压轴解答题(全国甲卷和Ⅰ卷)
命题规律
高考物理电磁场压轴解答题是考查学生物理学科素养高低的试金石,表现为综合性强、求解难度大、对考生的综合分析能力和应用数学知识解决物理问题的能力要求高等特点。
一、 命题范围
1. 通电导线在磁场中的平衡、运动问题(压轴指数★★★)
结合斜面模型,电流天平等模型,通电导线在磁场中的所受安培力作用下的平衡和运动问题的分析与计算。导体棒在磁场中做切割磁感线运动,电磁感应和力电综合问题。
2、带电粒子的在电场的加速和偏转问题(压轴指数★★★★)
带电粒子在电场中的加速、减速、类平抛运动的分析和计算。带电粒子在包含重力场和电场的场的直线运动或圆周运动的分析与计算。
3、带电粒子在有界磁场的运动(压轴指数★★★★★)
带电粒子在直线边界、圆形边界、三角形边界或其他特殊几何图形围成的边界的圆周运动的分析与计算。
4、带电粒子的组合场、复合场中的运动(压轴指数★★★★★)
带电粒子由电场进入磁场,或由磁场进入电场、或在电场和磁场中往复运动,在电场中的加速或类平抛运动,在磁场中的做匀速圆周运动或螺旋运动。
二、命题类型
1.包含安培力的力学情境综合型。物理情境选自生活生产情境或学习探究情境,物理力学情境综合型试题的物理模型有:斜面、板块、弹簧、通电导线等模型。研究对象包含两个或两个以上物体、物理过程复杂程度高。已知条件情境化、隐秘化、需要仔细挖掘题目信息。求解方法技巧性强、灵活性高、应用数学知识解决问题的能力要求高的特点。命题点常包含:匀变速直线运动、共点力平衡等。命题常涉及运动学、力学、功能关系等多个物理规律的综合运用,有时也会与相关图像联系在一起。
2. 某一平面内的带电粒子在电磁场中的运动模型。
在电场中的的类平抛采取运动分解思想,对速度和位移或加速度的分解。带电粒子在有界磁场中的运动,确定圆周运动的的圆心、半径、轨迹,分析临界条件,利用几何关系求解。
历年真题
1.(2021·全国·高考真题)如图,长度均为l的两块挡板竖直相对放置,间距也为l,两挡板上边缘P和M处于同一水平线上,在该水平线的上方区域有方向竖直向下的匀强电场,电场强度大小为E;两挡板间有垂直纸面向外、磁感应强度大小可调节的匀强磁场。一质量为m,电荷量为q(q>0)的粒子自电场中某处以大小为v0的速度水平向右发射,恰好从P点处射入磁场,从两挡板下边缘Q和N之间射出磁场,运动过程中粒子未与挡板碰撞。已知粒子射入磁场时的速度方向与PQ的夹角为60°,不计重力。
(1)求粒子发射位置到P点的距离;
(2)求磁感应强度大小的取值范围;
(3)若粒子正好从QN的中点射出磁场,求粒子在磁场中的轨迹与挡板MN的最近距离。
【答案】(1) ;(2) ;(3)粒子运动轨迹见解析,
【解析】(1)带电粒子在匀强电场中做类平抛运动,由类平抛运动规律可知
①
②
粒子射入磁场时的速度方向与PQ的夹角为60°,有
③
粒子发射位置到P点的距离
④
由①②③④式得
⑤
(2)带电粒子在磁场运动在速度
⑥
带电粒子在磁场中运动两个临界轨迹(分别从Q、N点射出)如图所示
由几何关系可知,最小半径
⑦
最大半径
⑧
带电粒子在磁场中做圆周运动的向心力由洛伦兹力提供,由向心力公式可知
⑨
由⑥⑦⑧⑨解得,磁感应强度大小的取值范围
(3)若粒子正好从QN的中点射出磁场时,带电粒子运动轨迹如图所示。
由几何关系可知
⑩
带电粒子的运动半径为
⑪
粒子在磁场中的轨迹与挡板MN的最近距离
⑫
由⑩⑪⑫式解得
⑬
2.(2020·全国·统考高考真题)在一柱形区域内有匀强电场,柱的横截面积是以O为圆心,半径为R的圆,AB为圆的直径,如图所示。质量为m,电荷量为q(q>0)的带电粒子在纸面内自A点先后以不同的速度进入电场,速度方向与电场的方向垂直。已知刚进入电场时速度为零的粒子,自圆周上的C点以速率v0穿出电场,AC与AB的夹角θ=60°。运动中粒子仅受电场力作用。
(1)求电场强度的大小;
(2)为使粒子穿过电场后的动能增量最大,该粒子进入电场时的速度应为多大?
(3)为使粒子穿过电场前后动量变化量的大小为mv0,该粒子进入电场时的速度应为多大?
【答案】(1);(2);(3)0或
【解析】(1)由题意知在A点速度为零的粒子会沿着电场线方向运动,由于q>0,故电场线由A指向C,根据几何关系可知
所以根据动能定理有
解得
(2)根据题意可知要使粒子动能增量最大则沿电场线方向移动距离最多,做AC垂线并且与圆相切,切点为D,即粒子要从D点射出时沿电场线方向移动距离最多,粒子在电场中做类平抛运动,根据几何关系有
而电场力提供加速度有
联立各式解得粒子进入电场时的速度
(3)因为粒子在电场中做类平抛运动,粒子穿过电场前后动量变化量大小为mv0,即在电场方向上速度变化为v0,过C点做AC垂线会与圆周交于B点
故由题意可知粒子会从C点或B点射出。当从B点射出时由几何关系有
电场力提供加速度
联立解得
当粒子从C点射出时初速度为0,粒子穿过电场前后动量变化量的大小为,该粒子进入电场时的速率应为或。
另解:
由题意知,初速度为0时,动量增量的大小为,此即问题的一个解。自A点以不同的速率垂直于电场方向射入电场的粒子,动量变化都相同,自B点射出电场的粒子,其动量变化量也恒为,由几何关系及运动学规律可得,此时入射速率为
3.(2019·全国·高考真题)如图,在直角三角形OPN区域内存在匀强磁场,磁感应强度大小为B、方向垂直于纸面向外.一带正电的粒子从静止开始经电压U加速后,沿平行于x轴的方向射入磁场;一段时间后,该粒子在OP边上某点以垂直于x轴的方向射出.已知O点为坐标原点,N点在y轴上,OP与x轴的夹角为30°,粒子进入磁场的入射点与离开磁场的出射点之间的距离为d,不计重力.求
(1)带电粒子的比荷;
(2)带电粒子从射入磁场到运动至x轴的时间.
【答案】(1) (2)
【解析】(1)粒子从静止被加速的过程,根据动能定理得:,解得:
根据题意,下图为粒子的运动轨迹,由几何关系可知,该粒子在磁场中运动的轨迹半径为:
粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,即:
联立方程得:
(2)根据题意,粒子在磁场中运动的轨迹为四分之一圆周,长度
粒子射出磁场后到运动至轴,运动的轨迹长度
粒子从射入磁场到运动至轴过程中,一直匀速率运动,则
解得:
或
4.(2018·全国·高考真题)如图,在y>0的区域存在方向沿y轴负方向的匀强电场,场强大小为E,在y> Dx,r >> d
则
sinθ ≈ θ,sin2θ ≈ 2θ
所以有
Dx = d×θ
s = r×2θ
联立可得
(2)因为测量前未调零,设没有通电流时偏移的弧长为s′,当初始时反射光点在O点上方,通电流I′后根据前面的结论可知有
当电流反向后有
联立可得
同理可得初始时反射光点在O点下方结果也相同,故待测电流的大小为
应考策略
一、安培力作用下的平衡和加速问题
解题思路:
(1)选定研究对象.
(2)受力分析时,变立体图为平面图,如侧视图、剖面图或俯视图等,并画出平面受力分析图,安培力的方向F安⊥B、F安⊥I.如图所示:
二、 带电粒子(带电体)在电场中的直线运动
1.做直线运动的条件
(1)粒子所受合外力F合=0,粒子静止或做匀速直线运动.
(2)粒子所受合外力F合≠0且与初速度共线,带电粒子将做加速直线运动或减速直线运动.
2.用动力学观点分析
a=,E=,v2-v02=2ad.
3.用功能观点分析
匀强电场中:W=Eqd=qU=mv2-mv02
非匀强电场中:W=qU=Ek2-Ek1带电粒子在匀强电场中的偏转
三、 带电粒子在匀强电场中的偏转
带电粒子在匀强电场中偏转的两个分运动
(1)沿初速度方向做匀速直线运动,t=(如图).
(2)沿静电力方向做匀加速直线运动
①加速度:a===
②离开电场时的偏移量:y=at2=
③离开电场时的偏转角:tan θ==
两个重要结论
(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的.
证明:在加速电场中有qU0=mv02
在偏转电场偏移量y=at2=··()2
偏转角θ,tan θ==
得:y=,tan θ=
y、θ均与m、q无关.
(2)粒子经电场偏转后射出,速度的反向延长线与初速度延长线的交点O为粒子水平位移的中点,即O到偏转电场边缘的距离为偏转极板长度的一半.
功能关系
当讨论带电粒子的末速度v时也可以从能量的角度进行求解:qUy=mv2-mv02,其中Uy=y,指初、末位置间的电势差.
四、 带电粒子在交变电场中的直线运动
1.常见的交变电场
常见的产生交变电场的电压波形有方形波、锯齿波、正弦波等.
2.常见的题目类型
(1)粒子做单向直线运动.
(2)粒子做往返运动.
3.解题技巧
(1)按周期性分段研究.
(2)将a-t图像v-t图像.
五、带电粒子在重力场和电场中的圆周运动
1.等效重力场
物体仅在重力场中的运动是最常见、最基本的运动,但是对于处在匀强电场和重力场中物体的运动问题就会变得复杂一些.此时可以将重力场与电场合二为一,用一个全新的“复合场”来代替,可形象称之为“等效重力场”.
2.
3.举例
六、带电粒子在有界匀强磁场中的运动
一、粒子轨迹圆心的确定,半径、运动时间的计算方法
1.圆心的确定方法
(1)若已知粒子轨迹上的两点的速度方向,分别确定两点处洛伦兹力F的方向,其交点即为圆心,如图甲.
(2)若已知粒子运动轨迹上的两点和其中某一点的速度方向,弦的中垂线与速度垂线的交点即为圆心,如图乙.
(3)若已知粒子轨迹上某点速度方向,又能根据r=计算出轨迹半径r,则在该点沿洛伦兹力方向距离为r的位置为圆心,如图丙.
2.半径的计算方法
方法一 由R=求得
方法二 连半径构出三角形,由数学方法解三角形或勾股定理求得
例如:如图甲,R=或由R2=L2+(R-d)2求得
常用到的几何关系
①粒子的偏转角等于半径扫过的圆心角,如图乙,φ=α
②弦切角等于弦所对应圆心角一半,θ=α.
3.时间的计算方法
方法一 利用圆心角、周期求得t=T
方法二 利用弧长、线速度求得t=
二、带电粒子在有界磁场中的运动
1.直线边界(进出磁场具有对称性,如图所示)
2.平行边界(往往存在临界条件,如图所示)
3.圆形边界(进出磁场具有对称性)
(1)沿径向射入必沿径向射出,如图甲所示.
(2)不沿径向射入时,如图乙所示.
射入时粒子速度方向与半径的夹角为θ,射出磁场时速度方向与半径的夹角也为θ.
七、带电粒子在组合场中的运动
1.组合场:电场与磁场各位于一定的区域内,并不重叠,或在同一区域,电场、磁场交替出现.
2.分析思路
(1)划分过程:将粒子运动的过程划分为几个不同的阶段,对不同的阶段选取不同的规律处理.
(2)找关键点:确定带电粒子在场区边界的速度(包括大小和方向)是解决该类问题的关键.
(3)画运动轨迹:根据受力分析和运动分析,大致画出粒子的运动轨迹图,有利于形象、直观地解决问题.
3.常见粒子的运动及解题方法
八、带电粒子在叠加场中的运动
1.叠加场
电场、磁场、重力场共存,或其中某两场共存.
2.带电粒子在叠加场中常见的几种运动形式
运动性质
受力特点
方法规律
匀速直线运动
粒子所受的合力为0
平衡条件
匀速圆周运动
除洛伦兹力外,另外两力的合力为零:qE=mg
牛顿第二定律、圆周运动的规律
较复杂的曲线运动
除洛伦兹力外,其他力的合力既不为零,也不与洛伦兹力等大反向
动能定理、能量守恒定律
九、带电粒子在交变电、磁场中的运动
解决带电粒子在交变电、磁场中的运动问题的基本思路
先读图
看清并且明白场的变化情况
受力分析
分析粒子在不同的变化场区的受力情况
过程分析
分析粒子在不同时间段内的运动情况
找衔接点
找出衔接相邻两过程的速度大小及方向
选规律
联立不同阶段的方程求解
模拟预测
1.如图所示,两个绝缘光滑的斜面对接,两个金属小滑轮、电容器、单刀双掷开关和导线预埋在顶部,导线焊接在滑轮上,两斜面的倾角分别为、,左边斜面内有垂直于斜面的匀强磁场,磁感应强度为。金属棒ab和绝缘棒cd用轻质软金属丝连接,静置在斜面上,质量分别为和,且,ab棒的电阻为r,两棒的长度均为l,电容器的电容为C。忽略滑轮摩擦,金属丝和导线电阻不计,重力加速度为g,两棒运动时保持与侧向垂直,两棒到斜面顶部距离足够大,金属丝平行于斜面,求解下列问题:
(1)单刀双掷开关掷1时,释放两棒,两棒最终的速度大小;
(2)单刀双掷开关掷2时,释放两棒,两棒运动的加速度大小。
【答案】(1);(2)
【解析】(1)ab和cd棒系统最终做匀速运动,设速度,此时对ab和cd棒分析受力,金属丝的拉力为,如图所示
由平衡条件有
ab棒切割磁感线,产生的感应电动势为E,则有
由闭合电路欧姆定律有
又有
联立以上各式解得
(2)设ab和cd棒系统的瞬时加速度为a,对ab和cd棒,由牛顿第二定律有
瞬间安培力
瞬间电流也是电容器的充电电流,则有
又有
而
联立以上各式解得
2.磁流体推动船的动力来源于电流和磁场间的相互作用。图1是在平静海面上某小型实验船的示意图,磁流体推动由磁体、电极和矩形通道(简称通道)组成。如图2所示,通道尺寸a=2.0m,b=0.25m,c=0.10m。工作时,在通道内沿z轴正方向加B=8.0T的匀强磁场;沿x轴负方向加匀强电场,使两金属板间的电压U=100V;海水沿y轴方向流过通道。已知海水的电阻率。
(1)船静止时,求电源接通瞬间推进器对海水推力的大小;
(2)船以v=5.0m/s的速度匀速前进。若以船为参考物,海水以5.0m/s的速率涌入进水口,切割磁感线的效果与导体棒类似,求此时两金属板间产生的感应电动势U感;
(3)船行驶时,通道中海水两侧的电压按计算,海水受到电磁力的80%可以转化为对船的推力。当船以v=5.0m/s的速度匀速前进时,求海水推力的功率。
【答案】(1) ;(2);(3)2880W
【解析】(1)根据电阻定律
安培力
解得
(2)两金属板间产生的感应电动势
(3)通道中的电流
安培力
海水推力的功率
3.如图是微波信号放大器的结构简图,其工作原理简化如下:均匀电子束以一定的初速度进入Ⅰ区(输入腔)被ab间交变电压(微波信号)加速或减速,当时,电子被减速到速度为,当时,电子被加速到速度为,接着电子进入Ⅱ区(漂移管)做匀速直线运动。某时刻速度为的电子进入Ⅱ区,t时间(小于交变电压的周期)后速度为的电子进入Ⅱ区,恰好在漂移管末端追上速度为的电子,形成电子“群聚块”,接着“群聚块”进入Ⅲ区(输出腔),达到信号放大的作用。忽略电子间的相互作用。求:
(1)电子进入Ⅰ区的初速度大小和电子的比荷;
(2)漂移管的长度L。
【答案】(1),;(2)
【解析】(1)在Ⅰ区,由动能定理得
联立解得
(2)在Ⅱ区,设电子运动时间为,则
联立解得
4.微波器件的核心之一是反射式速调管,它利用电子团在电场中的振荡来产生微波,其振荡原理可简化为静电场模型。已知静电场的方向平行于x轴,其电势随x的分布如图所示。一质量为、电荷量为的带负电粒子从点由静止释放,仅在电场力作用下沿x轴做往复运动,求:
(1)在区域内电场强度的大小和方向;
(2)该粒子运动过程中经过何处速度最大,最大速度是多少;
(3)该粒子运动的周期是多少。
【答案】(1)见解析;(2);(3)
【解析】(1)由图像的物理意义可知,在x轴正、负半轴分布着方向相反的匀强电场,在区域内电场强度大小
,方向沿x轴负方向
在范围电场强度大小
,方向沿x轴正方向
(2)粒子经过处时速度最大,由动能定理可得
代入数值可得
(3)设粒子从处运动至处用时,从处运动至处用时,则有
,
运动周期
带入数据可得
5.光滑绝缘水平面AB上有C、B两点。CB长L=21cm。另有一半径R=0.1m竖直放置的光滑半圆形金属导轨BM与水平面平滑相连,金属导轨BM接地,连接处能量无损失。现将一个带电量为Q的点电荷,固定在C点,如图所示。将另一带电量为+q,质量的金属小球(可视为点电荷)从D点(B、C间一点)静止释放,(感应电荷的影响忽略不计),若小球过圆弧的最高点后恰能击中C处的点电荷,已知金属小球进入金属导轨时,电量都导入大地,此后不带电(重力加速度)求:
(1)小球在最高点M点时对轨道的压力为多大?
(2)若不改变小球的质量而改变小球的电量q,仍从D点由静止释放,发现小球落地点到B点的水平距离s与小球的电量q满足下面图像的关系,则点电荷Q的电场在DB两点的电势差?
【答案】(1);(2)450V
【解析】(1)设小球在最高点速度为v,恰好水平抛出能击中C点,则有
联立可得
设最高点压力为N,则有
解得
由牛顿第三定律可得对轨道压力
(2)带电小球从D开始运动,设D、B电势差为,经金属轨道到从最高点下落,根据平抛运动规律可知
可得速度
由动能定理得
联立可得函数关系为
当q=0时,纵轴截距为
通过图线的坐标,斜率
而斜率
可得
6.如图(a),长度L=0.8m的光滑杆左端固定一带正电的点电荷A,其电荷量QA=1.8×10−7C,一质量m=0.02kg,带电量为q的小球B套在杆上。将杆沿水平方向固定于某非均匀外电场中,以杆左端为原点,沿杆向右为x轴正方向建立坐标系。点电荷A对小球B的作用力随B位置x的变化关系如图(b)中曲线I所示,小球B所受水平方向的合力随B位置x的变化关系如图(b)中曲线II所示,其中曲线II在0.16≤x≤0.20和x≥0.40范围可近似看作直线。求:(静电力常量k=9×109N·m2/C2)
(1)小球B所带电量q及电性;
(2)非均匀外电场在x=0.3m处沿细杆方向的电场强度E;
(3)在合电场中,x=0.4m与x=0.6m之间的电势差U。
(4)已知小球在x=0.2m处获得v=0.4m/s的初速度时,最远可以运动到x=0.4m。若小球在x=0.16m处受到方向向右,大小为0.04N的恒力作用后,由静止开始运动,为使小球能离开细杆,恒力作用的最小距离s是多少?
【答案】(1)1.0×10−6C,正电;(2)3.0×104N/C,方向水平向左;(3)−800V;(4)0.065m
【解析】(1)小球A带正电,根据点电荷A对小球B的作用力随B位置x的变化关系如图(b)中曲线I所示,可判断知点电荷A对小球B的作用力方向与x轴正方向相同,即为库仑斥力,故小球B带正电;由图(b)中曲线I可知,当x=0.3m时,有
因此
(2)设在x=0.3m处点电荷与小球间作用力为F2,有
因此
电场在x=0.3m处沿细杆方向的电场强度大小为,方向水平向左;
(3)根据图像可知在x=0.4m与x=0.6m之间合力做功为
由公式
可得
(4)根据图(b)中曲线II围成的面积表示合电场力做的功,可知小球从x=0.16m到x=0.2m处,合电场力做功为
小球从到处,合电场力做功为
==
由图可知小球从到处,合电场力做功为
由动能定理可得
+++=0
解得恒力作用的最小距离
7.如图所示,一绝缘细直杆固定在方向水平向左的匀强电场中,直杆与电场线成角,杆长为。一套在直杆上的带电小环,由杆端A以某一速度匀速下滑,小环离开杆后恰好通过杆端C正下方P点,C、P两点相距h。已知环的质量,环与杆间的动摩擦因素,,重力加速度g取。求:
(1)小环从杆端A运动到P点的时间;
(2)小环运动到杆端A正下方时的动能。
【答案】(1)1.9s;(2)34.25J
【解析】(1)小环从A到C的过程中匀速下滑,对小环受力分析可得
又因为
解得
小环从C到P的过程中,在水平方向有
竖直方向有
解得
,,
则小环从A运动到P点的时间为
(2)小环从C到A正下方的过程中,在水平方向有
竖直方向有
解得
,
则小环运动到杆端A正下方时的动能为
8.在芯片制造过程中,离子注入是其中一道重要的工序。如图所示是离子注入工作原理示意图,离子经加速后沿水平方向进入速度选择器,然后通过磁分析器,选择出特定比荷的离子,经偏转系统后注入处在水平面内的晶圆(硅片),速度选择器、磁分析器和偏转系统中的匀强磁场的磁感应强度大小均为B,方向均垂直于纸面向外;速度选择器和偏转系统中的匀强电场的电场强度大小均为E,方向分别为竖直向上和垂直于纸面向外,磁分析器截面是内外半径分别为R1和R2的四分之一圆环,其两端中心位置M和N处各有一个小孔;偏转系统中电场和磁场的分布区域是同一棱长为L的正方体,其底面与晶圆所在水平面平行,间距也为L,当偏转系统不加电场及磁场时,质量为m的离子恰好竖直注入到晶圆上的О点(即图中坐标原点,x轴垂直纸面向外),整个系统置于真空中,不计离子重力及离子间的相互作用,打在晶圆上的离子,经过电场和磁场偏转的角度都很小,当α很小时,有,,求:
(1)离子通过磁分析器选择出来离子的电荷量大小;
(2)偏转系统仅加电场时,离子在穿越偏转系统中动能的增加量;
(3)偏转系统仅加磁场时,离子注入晶圆的位置坐标(x,y)(用长度R1、R2及L表示)。
【答案】(1);(2);(3)
【解析】(1)在速度选择器中有
通过在磁分析器的离子
根据几何关系有
解得
(2)偏转系统仅加电场时,离子在偏转系统中做类平抛运动,则有
,
离子在穿越偏转系统中动能的增加量
解得
(3)偏转系统仅加磁场时,离子沿y轴正方向偏转,则有
x=0
作出粒子在偏转系统中的轨迹如图所示
根据几何关系有
,
当α很小时,有
,
解得
即离子注入晶圆的位置坐标为。
9.一质量为m、所带电荷量为q(q>0)的带电粒子,由静止开始经一电场加速,粒子在电场中运动的距离为3L,所经过的各点的电场强度如图所示。经过电场加速的粒子从A点垂直于磁场方向进入平行四边形匀强磁场区域。粒子从A点开始在磁场区域中做匀速圆周运动时,先后经过C、D两点。已知线段AC=AD=L,∠CAD=120°,不计粒子重力。求:
(1)粒子在磁场中运动的速度v的大小;
(2)穿过平行四边形匀强磁场区域的磁通量的最小值Φmin。
【答案】(1);(2)
【解析】(1)带电粒子在电场中加速运动,图线与坐标轴所围的面积为电势差,由动能定理得
解得
(2)设匀强磁场的磁感应强度为,平行四边形区域的最小面积为,带电粒子在磁场中做匀速圆周运动,轨迹如图所示
由几何关系可得,为正三角形,由牛顿运动定律得
如图所示,当轨迹圆与平行四边形的三条边均相切且平行四边形为矩形时,区域的面积最小,磁通量最小,由几何关系可得
解得
10.如图甲所示,在坐标系xOy的第一象限内存在图乙所示的交变磁场(取垂直纸面向外为正),OD与x轴正方向的夹角为α,α=37°,P(4L,3L)是OD上一点.t=0时刻,一质量为m、所带电荷量为q的带正电粒子从P点沿y轴负方向射入磁场,经过一定的整周期(交变磁场变化的周期)后粒子恰好能经过原点O,已知粒子的重力不计,sin 37°=0.6,求:
(1)粒子的运动速度应满足的条件.
(2)交变磁场变化的周期T.
【答案】(1) (n=1,2,3,…) (2)
【解析】(1)粒子运动的轨迹如图;根据 ;由图可知: (n=1,2,3,…),
解得 (n=1,2,3,…)
(2)粒子运动的周期: ,则磁场变化的周期:
11.如图所示,O-xyz坐标系的y轴竖直向上,在yOz平面左侧区域内存在着沿y轴负方向的匀强电场,区域内存在着沿z轴负方向的匀强磁场,在yOz平面右侧区域同时存在着沿x轴正方向的匀强电场和匀强磁场,电场强度和磁感应强度大小均与yOz平面左侧相等,电磁场均具有理想边界。一个质量为m,电荷量为+q的粒子从点以速度沿x轴正方向射入电场,经点进入磁场区域,然后从O点进入到平面yOz右侧区域,粒子从离开O点开始多次经过x轴,不计粒子重力。求:
(1)匀强电场的电场强度大小E;
(2)匀强磁场的磁感应强度大小B;
(3)粒子从离开O点开始,第n(n=1,2,3,…)次到达x轴时距O点的距离s。
【答案】(1);(2);(3)(n=1,2,3,…)
【解析】(1)粒子在电场中运动时,有
,
由牛顿第二定律
得
(2)在N点,设粒子速度v的方向与x轴间的夹角为,沿y轴负方向的速度为,则有
,,
解得
,,
粒子轨迹如图所示
根据几何关系,粒子做圆周运动轨迹的半径为
由牛顿第二定律得
解得
(3)将粒子在O点的速度分解
,
因同时存在电场、磁场,粒子以在磁场中做匀速圆周运动,同时粒子以初速度沿x轴正方向做匀加速运动,粒子离开O后,每转一周到达一次x轴,第n次到达x轴时,粒子运动的时间
解得
(n=1,2,3,…)
12.如图所示,直角坐标系平面(纸面)中区域内存在沿y轴正方向的匀强电场,区域内存在方向垂直于纸面向外、磁感应强度大小为B的匀强磁场.第一象限内,在处有一平行于y轴的足够长的粒子吸收屏,质量为m、带电量为的粒子从点以平行于x轴正方向的速度射入磁场,经磁场偏转后第一次从x轴上的点进入匀强电场,一段时间后,粒子打到吸收屏上.粒子重力不计.求:
(1)粒子从P点射入磁场时的速度大小;
(2)为保证粒子能打到吸收屏上,电场强度的大小范围;
(3)若电场强度大小为,粒子从P点运动到吸收屏上的时间。
【答案】(1);(2);(3)
【解析】(1)带电粒子在磁场中的运动轨迹如下图所示
设圆周运动的半径为R,由几何关系可得
①
带电粒子在磁场中做匀速圆周运动,根据洛伦兹力提供向心力可得
②
由式①②解得
③
(2)如上图所示,由几何关系得
④
根据运动的合成和分解可得
⑤
粒子在电场中运动时,根据牛顿第二定律可得
⑥
粒子在电场中运动时,粒子在水平方向的位移
⑦
粒子从电场中射出后再次进入磁场做匀速圆周运动,为保证粒子能打到右边吸收屏,则需要满足
⑧
联立解得
⑨
(3)整个运动过程中,粒子做的是向右偏移的周期性运动,运动轨迹如下图所示
粒子在磁场中做匀速圆周运动的周期为
⑩
一个周期内,粒子在磁场中运动的时间为
⑪
一个周期内,设在电场中运动的时间为,则
⑫
⑬
粒子在电场中水平位移为
⑭
粒子完成一次完整周期运动,粒子在水平方向移动的距离为
⑮
粒子从开始运动到吸收屏,需要经过4个完整的周期,之后再在磁场中偏转,所以总的运动时间为
⑯
联立解得
⑰
相关试卷
这是一份热学压轴解答题(全国甲卷和Ⅰ卷)-2023年高考物理十年压轴真题题型解读与模拟预测(解析版),共29页。试卷主要包含了盖吕萨克定律,查理定律,理想气体状态方程等内容,欢迎下载使用。
这是一份力学压轴实验题(全国甲卷和Ⅰ卷)-2023年高考物理十年压轴真题题型解读与模拟预测(解析版),共30页。试卷主要包含了探究加速度与力、质量的关系,研究平抛运动,探究功和速度变化的关系,控制变量法探究向心力大小,验证机械能守恒定律,验证动量守恒定律, 综合力学实验型,775cm; 53等内容,欢迎下载使用。
这是一份近代物理压轴选择题、填空题(全国甲卷和Ⅰ卷)-2023年高考物理十年压轴真题题型解读与模拟预测(解析版),共19页。试卷主要包含了波粒二象性,综合型问题,7 MeVB.3,0035u,63×10-34 J·s),原子核的衰变等内容,欢迎下载使用。