开学活动
搜索
    上传资料 赚现金
    英语朗读宝

    2023年高考数学大题专练(新高考专用) 专题21 随机变量与分布列 Word版含解析

    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      2023年高考数学大题专练(新高考专用) 专题21 随机变量与分布列 Word版含解析.docx
    • 练习
      2023年高考数学大题专练(新高考专用) 专题21 随机变量与分布列 Word版无答案.docx
    2023年高考数学大题专练(新高考专用) 专题21 随机变量与分布列  Word版含解析第1页
    2023年高考数学大题专练(新高考专用) 专题21 随机变量与分布列  Word版含解析第2页
    2023年高考数学大题专练(新高考专用) 专题21 随机变量与分布列  Word版含解析第3页
    2023年高考数学大题专练(新高考专用) 专题21 随机变量与分布列  Word版无答案第1页
    2023年高考数学大题专练(新高考专用) 专题21 随机变量与分布列  Word版无答案第2页
    2023年高考数学大题专练(新高考专用) 专题21 随机变量与分布列  Word版无答案第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023年高考数学大题专练(新高考专用) 专题21 随机变量与分布列 Word版含解析

    展开

    这是一份2023年高考数学大题专练(新高考专用) 专题21 随机变量与分布列 Word版含解析,文件包含2023年高考数学大题专练新高考专用专题21随机变量与分布列Word版含解析docx、2023年高考数学大题专练新高考专用专题21随机变量与分布列Word版无答案docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。
    专题21  随机变量与分布列一、解答题1.(2022·全国·高考真题(理))甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.50.40.8,各项目的比赛结果相互独立.(1)求甲学校获得冠军的概率;(2)X表示乙学校的总得分,求X的分布列与期望. 2.(2021·北京·高考真题)在核酸检测中, “k1” 混采核酸检测是指:先将k个人的样本混合在一起进行1次检测,如果这k个人都没有感染新冠病毒,则检测结果为阴性,得到每人的检测结果都为阴性,检测结束:如果这k个人中有人感染新冠病毒,则检测结果为阳性,此时需对每人再进行1次检测,得到每人的检测结果,检测结束.现对100人进行核酸检测,假设其中只有2人感染新冠病毒,并假设每次检测结果准确.I)将这100人随机分成10组,每组10人,且对每组都采用“101”混采核酸检测.(i)如果感染新冠病毒的2人在同一组,求检测的总次数;(ii)已知感染新冠病毒的2人分在同一组的概率为.X是检测的总次数,求X分布列与数学期望E(X).(II)将这100人随机分成20组,每组5人,且对每组都采用“51”混采核酸检测.Y是检测的总次数,试判断数学期望E(Y)(I)E(X)的大小.(结论不要求证明) 3.(2022·青海·海东市第一中学模拟预测(理))民族要复兴,乡村必振兴,为了加强乡村振兴宣传工作,让更多的人关注乡村发展,某校举办了有关城乡融合发展、人与自然和谐共生的知识竞赛.比赛分为初赛和复赛两部分,初赛采用选手从备选题中选一题答一题的方式进行,每位选手最多有5次答题机会,选手累计答对3题或答错3题即终止比赛,答对3题者直接进入复赛,答错3题者则被淘汰.已知选手甲答对每个题的概率均为,且相互间没有影响.(1)求选手甲被淘汰的概率;(2)设选手甲在初赛中答题的个数为X,试求X的分布列和数学期望. 4.(2022·湖北·黄冈中学三模)2022世界乒乓球团体锦标赛将于2022930日至109日在成都举行.近年来,乒乓球运动已成为国内民众喜爱的运动之一.今有甲、乙两选手争夺乒乓球比赛冠军,比赛采用三局两胜制,即某选手率先获得两局胜利时比赛结束.根据以往经验, 甲、乙在一局比赛获胜的概率分别为,且每局比赛相互独立.(1)求甲获得乒兵球比赛冠军的概率;(2)比赛开始前,工作人员买来两盒新球,分别为装有2个白球与1个黄球的白盒与装有1个白球与2个黄球的黄盒.每局比赛前裁判员从盒中随机取出一颗球用于比赛,且局中不换球,该局比赛后,直接丢弃.裁判按照如下规则取球:每局取球的盒子颜色与上一局比赛用球的颜色一致,且第一局从白盒中取球.记甲、乙决出冠军后,两盒内白球剩余的总数为,求随机变量的分布列与数学期望. 5.(2022·全国·南京外国语学校模拟预测)真人密室逃脱将玩家关在一间密闭的房间中,主持人讲述相关的故事背景和注意事项,不同的主题有不同的故事背景,市面上较多的为电影主题,宝藏主题,牢笼主题等.由甲、乙、丙三个人组成的团队参加真人密室逃脱,第一关解密码锁,3个人依次进行,每人必须在5分钟内完成,否则派下一个人.3个人中只要有一人能解开密码锁,则该团队进入下一关,否则淘汰出局.甲在5分钟内解开密码锁的概率为0.8,乙在5分钟内解开密码锁的概率为0.6,丙在5分钟内解开密码锁的概率为0.5,各人是否解开密码锁相互独立.(1)求该团队能进入下一关的概率;(2)该团队以怎样的先后顺序派出人员,可使所需派出的人员数目的数学期望达到最小?并说明理由. 6.(2022·全国·模拟预测)北京时间2021725日,2020东京奥运会射箭女子团体决赛在梦之岛公园射箭场结束.决赛规则为每局比赛双方各派一名队员射击6次,6次总分高的一方获得2分,若总分持平,双方各得1分,先得6分的一方获得比赛的胜利.韩国队提前一局结束比赛,以6-0完胜俄罗斯奥委会队,自该项目1988年进入奥运会大家庭以来,韩国队包揽了全部9枚金牌.在本届赛事中,韩国代表团迄今收获的两金均来于射箭项目,其中20岁的安山有望在东京奥运会上成为三冠王,俄罗斯奥委会队连续两届摘得该项目银牌,德国队获得季军,决赛的成绩(单位:环)统计数据如图所示.(1)分别求韩国队、俄罗斯奥委会队第3局比赛成绩的中位数;(2)比较韩国队、俄罗斯奥委会队第2局比赛的平均水平和发挥的稳定性;(3)从韩国队三局比赛成绩(每一局的总得分)中随机抽取一个,记为x,从俄罗斯奥委会队三局比赛成绩(每一局的总得分)中随机抽取一个,记为y,设Zx-y,求Z的数学期望.  7.(2022·辽宁·渤海大学附属高级中学模拟预测)对于中国航天而言,2021年可以说是历史上的超级航天年,用世界航天看中国来形容也不为过.20211016日,神舟十三号载人飞船将翟志刚、王亚平、叶光富三名航天员送入太空,2022416日安全返回地球,返回之后他们与2名航天科学家从左往右排成一排合影留念.求:(1)总共有多少种排法;(2)3名宇航员互不相邻的概率;(3)2名航天科学家之间航天员的数量为X,求X的分布列与数学期望. 8.(2022·全国·模拟预测(理))九连环是中国传统的有代表性的智力玩具,凝结着中国传统文化,具有极强的趣味性九连环既能练脑又能练手,对开发人的逻辑思维能力及活动手指筋骨大有好处.同时它还可以培养学习工作的专注精神和耐心,实为老少咸宜.据明代杨慎《丹铅总录》记载,曾以玉石为材料制成两个互贯的圆环,两环互相贯为一,得其关换,解之为二,又合而为一.后来,以铜或铁代替玉石.甲、乙两位同学进行九连环比赛,每局不存在平局.比赛规则规定,领先3局者获胜.若比赛进行了7局,仍然没有人领先3局,比赛结束,领先者也获胜.已知甲同学每局获胜的概率为,且每局之间相互独立.现比赛已经进行了2局,甲同学2局全输.(1)由于某种原因,比赛规则改为五局三胜制,试判断新规则对谁更有利,并说明理由;(2)设比赛总局数为,求随机变量的分布列及期望. 9.(2022·黑龙江·大庆实验中学模拟预测(理))核酸检测是诊断新冠肺炎的重要依据,首先取病人的唾液或咽拭子的样本,再提取唾液或咽拭子样本里的遗传物质,如果有病毒,样本检测会呈现阳性,否则为阴性.某检测点根据统计发现,该处疑似病例核酸检测呈阳性的概率为.现有4例疑似病例,分别对其取样检测,多个样本检测时,既可以逐个化验,也可以将若干个样本混合在一起化验.混合样本中只要有病毒,则混合样本化验结果就会呈阳性.若混合样本呈阳性,则再将该组中每一个备份的样本逐一进行化验;若混合样本呈阴性,则判定该组各个样本均为阴性,无需再检验.现有以下两种方案:方案一:逐个化验;方案二:平均分成两组,每组两个样本混合在一起,再分组化验.在新冠肺炎爆发初期,由于检查能力不足,化验次数的期望值越小,则方案越(1)4个疑似病例中至少有1例呈阳性的概率;(2)现将该4例疑似病例样本进行化验,请问:方案一、二中哪个较?做出判断并说明理由. 10.(2022·全国·模拟预测)某紫砂壶加工工坊在加工一批紫砂壶时,在出窑过程中有的会因为气温骤冷、泥料膨胀率不均等原因导致紫砂壶出现一定的瑕疵而形成次品,有的直接损毁.通常情况下,一把紫砂壶的成品率为,损毁率为.对于烧窑过程中出现的次品,会通过再次整形调整后入窑复烧,二次出窑,其在二次出窑时不出现次品,成品率为.已知一把紫砂壶加工的泥料成本为500/把,每把壶的平均烧窑成本为50/次,复烧前的整形工费为100/次,成品即可对外销售,售价均为1500元.(1)求一把紫砂壶能够对外销售的概率;(2)某客户在一批紫砂壶入窑前随机对一把紫砂壶坯料进行了标记,求被标记的紫砂壶的最终获利X的数学期望. 11.(2022·山东·德州市教育科学研究院三模)某学校对男女学生是否喜欢长跑进行了调查,调查男女生人数均为,统计得到以下2×2列联表,经过计算可得. 男生女生合计喜欢  不喜欢  合计 (1)完成表格求出n值,并判断有多大的把握认为该校学生对长跑的喜欢情况与性别有关;(2)为弄清学生不喜欢长跑的原因,采用分层抽样的方法从调查的不喜欢长跑的学生中随机抽取9人,再从这9人中抽取3人进行面对面交流,求至少抽到一名女生的概率;将频率视为概率,用样本估计总体,从该校全体学生中随机抽取10人,记其中对长跑喜欢的人数为X,求X的数学期望.附表:0.100.050.0250.0100.0012.7063.8415.0246.63510.828附:. 12.(2022·河南·平顶山市第一高级中学模拟预测(理))已知某射击运动员射中固定靶的概率为,射中移动靶的概率为,每次射中固定靶、移动靶分别得1分、2分,脱靶均得0分,每次射击的结果相互独立,该射击运动员进行3次打靶射击;向固定靶射击2次,向移动靶射击1次.(1)该射击运动员没有射中移动靶且恰好射中固定靶1的概率;(2)若该射击运动员的总得分为X,求X的分布列和数学期望. 13.(2022·湖北·模拟预测)第24届冬季奥林匹克运动会,即2022年北京冬季奥运会,于202224日星期五开幕,220日星期日闭幕,该奥运会激发了大家对冰雪运动的热情,某冰雪运动品商店对消费达一定金额的顾客开展了冬奥知识有奖竞答活动,试题由若干选择题和填空题两种题型构成,共需要回答三个问题,对于每一个问题,答错得0分;答对填空题得30分答对选择题得20分现设置了两种活动方案供选择,方案一:只回答填空题;方案二:第一题是填空题,后续选题按如下规则:若上一题回答正确,则下一次是填空题,若上题回答错误,则下一次是选择题.某顾客获得了答题资格,已知其答对填空题的概率均为,答对选择题的概率均为P,且能正确回答问题的概率与回答次序无关(1)若该顾客采用方案一答题,求其得分不低于60分的概率;(2)以得分的数学期望作为判断依据,该顾客选择何种方案更加有利?并说明理由. 14.(2022·辽宁·东北育才学校模拟预测)下围棋既锻炼思维又愉悦身心,有益培养人的耐心和细心,舒缓大脑并让其得到充分休息现某学校象棋社团为丰富学生的课余生活,举行象棋大赛,要求每班选派一名象棋爱好者参赛.现某班有12位象棋爱好者,经商议决定采取单循环方式进行比赛,(规则采用中国数目法,没有和棋)即每人进行11轮比赛,最后靠积分选出第一名去参加校级比赛积分规则如下(每轮比赛采取53胜制,比赛结束时,取胜者可能会出现三种赛式). 胜者积分32负者积分019轮过后,积分榜上的前两名分别为甲和乙,甲累计积分26分,乙累计积分22分.第10轮甲和丙比赛,设每局比赛甲取胜的概率均为,各局比赛结果相互独立.(1)在第10轮比赛中,甲所得积分为X,求X的分布列;求第10轮结束后,甲的累计积分Y的期望;(2)已知第10轮乙得3分,判断甲能否提前一轮获得累计积分第一,结束比赛.(提前一轮即比赛进行10轮就结束,最后一轮即第11轮无论乙得分结果如何,甲累计积分最多)?若能,求出相应的概率;若不能,请说明理由. 15.(2022·江西·上高二中模拟预测(理))冰壶是202224日至220日在中国举行的第24届冬季奥运会的比赛项目之一.冰壶比赛的场地如图所示,其中左端(投掷线的左侧)有一个发球区,运动员在发球区边沿的投掷线将冰壶掷出,使冰壶沿冰道滑行,冰道的右端有一圆形的营垒,以场上冰壶最终静止时距离营垒区圆心的远近决定胜负,甲、乙两人进行投掷冰壶比赛,规定冰壶的重心落在圆中,得3分,冰壶的重心落在圆环中,得2分,冰壶的重心落在圆环中,得1分,其余情况均得0分.已知甲、乙投掷冰壶的结果互不影响,甲、乙得3分的概率分别为;甲、乙得2分的概率分别为;甲、乙得1分的概率分别为(1)求甲所得分数大于乙所得分数的概率;(2)设甲、乙两人所得的分数之差的绝对值为,求的分布列和期望. 16.(2022·北京·北大附中三模)北京市某区针对高三年级的一次测试做调研分析,随机抽取同时选考物理化学的学生330名,下表是物理化学成绩等级和人数的数据分布情况:物理成绩等级化学成绩等级人数(名)11053255701531210(1)从该区高三年级同时选考物理化学的学生中随机抽取1人,已知该生的物理成绩等级为,估计该生的化学成绩等级为的概率;(2)从该区高三年级同时选考物理化学的学生中随机抽取2人,以表示这2人中物理化学成绩等级均为的人数,求的分布列和数学期望(以上表中物理化学成绩等级均为的频率作为每名学生物理化学成绩等级均为的概率);(3)记抽取的330名学生在这次考试中数学成绩(满分150分)的方差为,排名前的成绩方差为,排名后的成绩方差为,则不可能同时大于,这种判断是否正确.(直接写出结论). 17.(2022·北京市第五中学三模)2022 年春节后,新冠肺炎的新变种奥密克戎在我国部分地区爆发. 该病毒是一种人传人,不易被人们直接发现,潜伏期长且传染性极强的病毒. 我们把与该病毒感染者有过密切接触的人群称为密切接触者. 一旦发现感染者,社区会立即对其进行流行性病医学调查,找到其密切接触者进行隔离观察. 调查发现某位感染者共有 10 位密切接触者,将这 10 位密切接触者隔离之后立即进行核酸检测. 核酸检测方式既可以采用单样本检测,又可以采用 1 检测法”. “ 1 检测法是将 个样本混合在一起检测,若混合样本呈阳性,则该组中各个样本再全部进行单样本检测; 若混合样本呈阴性,则可认为该混合样本中每个样本都是阴性. 通过病毒指标检测,每位密切按触者为阴性的概率为 ,且每位密切接触者病毒指标是否为阴性相互独立.(1)现对 10 个样本进行单样本检测,求检测结果最多有1个样本为阳性的概率 的表达式;(2)若对 10 个样本采用 “51检测法进行核酸检测. 表示以下结论:求某个混合样本呈阳性的概率;设总检测次数为,求的分布列和数学期望 . 18.(2022·北京八十中模拟预测)为调查某公司五类机器的销售情况,该公司随机收集了一个月销售的有关数据,公司规定同一类机器销售价格相同,经分类整理得到下表:机器类型第一类第二类第三类第四类第五类销售总额(万元)10050200200120销售量(台)521058利润率0.40.20.150.250.2利润率是指:一台机器销售价格减去出厂价格得到的利润与该机器销售价格的比值.(1)从该公司本月卖出的机器中随机选一台,设该台机器的利润为X万元,求X的分布列和数学期望;(2)从该公司本月卖出的机器中随机选取2台,设这2台机器的利润和恰好为13万元的概率;(3)假设每类机器利润率不变,销售一台第一类机器获利万元,销售一台第二类机器获利万元,,销售一台第五类机器获利万元,依据上表统计数据,随机销售一台机器获利的期望为,设,试判断的大小.(结论不要求证明) 19.(2022·黑龙江·哈尔滨三中模拟预测(理))哈三中从甲乙两个班级中选拔一个班级代表学校参加知识竞赛,在校内组织预测试,为测试两班平均水准,要求每班参加预测试的代表学生应按班级人数的随机选出.现甲班在籍学生50人,乙班在籍学生40(1)若乙班将学生进行编号,编号分别为12340,采用系统抽样的方法等距抽取,若第二段被抽取的学生编号为7,求第四段抽取的学生的编号(直接写出结果,无需过程);(2)现从甲乙两班代表学生中利用分层抽样共选取9人,再从这9人中随机抽取3人参加加试,记其中甲班学生人数为随机变量X,求X的分布列与期望. 20.(2022·福建省德化第一中学模拟预测)现代战争中,经常使用战斗机携带空对空导弹攻击对方战机,在实际演习中空对空导弹的命中率约为,由于飞行员的综合素质和经验的不同,不同的飞行员使用空对空导弹命中对方战机的概率也不尽相同.在一次演习中,红方的甲、乙两名优秀飞行员发射一枚空对空导弹命中蓝方战机的概率分别为,两名飞行员各携带4枚空对空导弹.(1)甲飞行员单独攻击蓝方一架战机,连续不断地发射导弹攻击,一旦命中或导弹用完即停止攻击,各次攻击相互独立,求甲飞行员能够命中蓝方战机的概率?(2)蓝方机群共有8架战机,若甲、乙共同攻击(战机均在攻击范围之内,每枚导弹只攻击其中一架战机,甲,乙不同时攻击同一架战机).若一轮攻击中,每人只有两次进攻机会,记一轮攻击中,击中蓝方战机数为,求的分布列;若实施两轮攻击(用完携带的导弹),记命中蓝方战机数为,求的数学期望

    相关试卷

    专题21 随机变量与分布列-备战2024年高考数学复习大题全题型专练:

    这是一份专题21 随机变量与分布列-备战2024年高考数学复习大题全题型专练,文件包含专题21随机变量与分布列解析版docx、专题21随机变量与分布列原卷版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。

    2023年高考数学大题专练(新高考专用) 专题22 条件概率与正态分布 Word版含解析:

    这是一份2023年高考数学大题专练(新高考专用) 专题22 条件概率与正态分布 Word版含解析,文件包含2023年高考数学大题专练新高考专用专题22条件概率与正态分布Word版含解析docx、2023年高考数学大题专练新高考专用专题22条件概率与正态分布Word版无答案docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。

    2023年高考数学大题专练(新高考专用) 专题20 回归分析 Word版含解析:

    这是一份2023年高考数学大题专练(新高考专用) 专题20 回归分析 Word版含解析,文件包含2023年高考数学大题专练新高考专用专题20回归分析Word版含解析docx、2023年高考数学大题专练新高考专用专题20回归分析Word版无答案docx等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map