所属成套资源:2023高考一轮复习知识点精讲同步训练原卷版加解析版
- 第35讲 多体机械能守恒问题(解析版) 试卷 3 次下载
- 第35讲 多体机械能守恒问题(原卷版) 试卷 2 次下载
- 第36讲 与弹簧相关的机械能守恒问题 试卷 0 次下载
- 第37讲 运用功能关系分析解决(实际)问题(解析版) 试卷 0 次下载
- 第37讲 运用功能关系分析解决(实际)问题(原卷版) 试卷 0 次下载
第36讲 与弹簧相关的机械能守恒问题(原卷版)
展开
这是一份第36讲 与弹簧相关的机械能守恒问题(原卷版),共9页。
第36讲 与弹簧相关的机械能守恒问题1.(2022·江苏)如图所示,轻质弹簧一端固定,另一端与物块A连接在一起,处于压缩状态.A由静止释放后沿斜面向上运动到最大位移时,立即将物块B轻放在A右侧,A、B由静止开始一起沿斜面向下运动,下滑过程中A、B始终不分离,当A回到初始位置时速度为零.A、B与斜面间的动摩擦因数相同、弹簧未超过弹性限度,则( )A.当上滑到最大位移的一半时,A的加速度方向沿斜面向下 B.A上滑时,弹簧的弹力方向不发生变化 C.下滑时,B对A的压力先减小后增大 D.整个过程中A、B克服摩擦力所做的总功大于B的重力势能减小量(多选)2.(2022·辽宁)如图所示,带电荷量为6Q(Q>0)的球1固定在倾角为30°光滑绝缘斜面上的a点,其正上方L处固定一电荷量为﹣Q的球2,斜面上距a点L处的b点有质量为m的带电球3,球3与一端固定的绝缘轻质弹簧相连并在b点处于静止状态。此时弹簧的压缩量为,球2、3间的静电力大小为。迅速移走球1后,球3沿斜面向下运动。g为重力加速度,球的大小可忽略,下列关于球3的说法正确的是( )A.带负电 B.运动至a点的速度大小为 C.运动至a点的加速度大小为2g D.运动至ab中点时对斜面的压力大小为mg 一.知识回顾1.弹簧类问题的突破要点(1)弹簧的弹力大小由形变大小决定,解题时一般应从弹簧的形变分析入手,确定原长位置、现长位置、平衡位置等,再结合其他力的情况分析物体的运动状态。(2)因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变。因此,在分析瞬间变化时可以认为弹力大小不变,即弹簧的弹力不突变。(3)在求弹簧的弹力做功或弹簧的弹性势能时,通常可以根据系统的机械能守恒或功能关系进行分析。2.弹簧类问题的注意事项(1)弹簧处于相同状态时弹性势能相等;(2)在不同的物理过程中,弹簧形变量相等,则弹性势能的变化量相等。(3)弹簧的弹性势能增加或减少时,弹簧与其它物体发生了能量的转移或转化。 二.例题精析题型一:弹簧与一物体相连(多选)例1.如图所示,一轻弹簧固定于O点,另一端系一小球,将小球从与悬点O在同一水平面且弹簧保持原长的A点无初速度地释放,让它自由摆下,不计空气阻力。在小球由A点摆向最低点B的过程中,下列说法中正确的是( )A.小球的重力势能增加 B.小球的重力势能减少 C.弹簧的弹性势能增加 D.弹簧的弹力做负功,弹性势能减少 题型二:弹簧与多物体相连(多选)例2.如图所示,带有挡板的光滑斜面固定在水平地面上,斜面的倾角为θ=30°.质量均为l kg的A、B两物体用轻弹簧拴接在一起,弹簧的劲度系数为5N/cm,质量为2kg的物体C用细线通过光滑的轻质定滑轮与物体B连接.开始时A、B均静止在斜面上,A紧靠在挡板处,用手托住C,使细线刚好被拉直.现把手拿开,让C由静止开始运动,从C开始运动到A刚要离开挡板的过程中,下列说法正确的是(取g=10m/s2)( )A.初状态弹簧的压缩量为1cm B.末状态弹簧的伸长量为1cm C.物体B、C与地球组成的系统机械能守恒 D.物体C克服绳的拉力所做的功为0.2J 二.举一反三,巩固练习如图所示,粗糙水平轨道AB与竖直平面内的光滑圆轨道BC在B处平滑连接,B、C分别为圆轨道的最低点和最高点。一个质量m=0.1kg的小物体P被一根细线拴住放在水平轨道上,细线的左端固定在竖直墙壁上。在墙壁和P之间夹一根被压缩的轻弹簧,此时P到B点的距离x0=0.5m。物体P与水平轨道间的动摩擦因数μ=0.2,半圆轨道半径R=1.0m。现将细线剪断,P被弹簧向右弹出后滑上圆轨道,已知P经过B点时对轨道的压力为4.6N,g取10m/s2。则细线未剪断时弹簧的弹性势能为( )A.1.9J B.1.8J C.1.7J D.1.6J弹簧的一端固定在墙上,另一端系一质量为m的木块,弹簧为自然长度时木块位于水平地面上的O点,如图所示。现将木块从O点向右拉开一段距离L后由静止释放,木块在粗糙水平面上先向左运动,然后又向右运动,往复运动直至静止。已知弹簧始终在弹性限度内,且弹簧第一次恢复原长时木块的速率为v0,则( )A.木块第一次向左运动经过O点时速率最大 B.木块最终停在O点 C.整个运动过程中木块速率为v0的时刻只有一个 D.整个运动过程中木块速率为v0的时刻只有两个如图所示,在光滑的水平面上有两个物块A、B,中间连接着一轻质弹簧,A靠在竖直的墙壁上,先用力作用于B上,使弹簧压缩一定距离后释放,从释放物块B到弹簧第一次恢复原长的过程中,下列说法正确的是( )A.刚释放物块B时,A的速度最大 B.刚释放物块B时,B的速度最大 C.弹簧第一次恢复原长时,弹性势能最大 D.弹簧第一次恢复原长时,B的动能最大如图所示,物体A、B通过细绳及轻质弹簧连接在轻滑轮两侧,物体A、B的质量分别为m、m,开始时细绳伸直,用手托着物体A使弹簧处于原长且A与地面的距离为h,物体B静止在地面上.放手后物体A下落,到与地面即将接触时速度为v,此时物体B对地面恰好无压力,不计一切摩擦阻力。则( )A.上述过程中物体A的速度先增大后减小 B.上述过程中物体A机械能的变化量为mv2 C.上述过程中物体A的加速度先减小后保持不变 D.此时弹簧的弹性势能等于mv2﹣mgh如图甲所示为某缓冲装置模型,劲度系数为k(足够大)的轻质弹簧与轻杆相连,轻杆可在固定的槽内移动,与槽间的滑动摩擦力为定值f。轻杆向右移动不超过l时,装置可安全工作。一质量为m的小车以速度v0撞击弹簧后,轻杆恰好向右移动l,此过程其速度v随时间t变化的v﹣t图象如图乙所示。已知在0~t1时间内,图线为曲线,在t1~t2时间内,图线为直线。已知装置安全工作时,轻杆与槽间的最大静摩擦力等于滑动摩擦力,且不计小车与地面间的摩擦。下列说法正确的是( )A.在0~t1时间内,小车运动的位移为 B.在t1时刻,小车速度v1 C.在0~t2时间内,轻杆摩擦产生热Q=fl D.在t1+t2时刻,小车恰好离开轻弹簧如图所示,质量为m的小球甲穿过一竖直固定的光滑杆拴在轻弹簧上,质量为4m的物体乙用轻绳跨过光滑的定滑轮与甲连接,开始用手托住乙,轻绳刚好伸直,滑轮左侧绳竖直,右侧绳与水平方向夹角α=53°,某时刻由静止释放乙(足够高),经过一段时间小球运动到Q点,OQ两点的连线水平,OQ=d,且小球在P、Q两点处时弹簧弹力的大小相等。已知重力加速度为g,sin53°=0.8,cos53°=0.6。则( )A.弹簧的劲度系数为 B.物体乙释放瞬间加速度等于g C.小球甲到达Q点时的速度大小为 D.小球和物体乙的机械能之和保持不变如图所示,光滑细杆AB倾斜固定,与水平方向夹角为45°,一轻质弹簧的一端固定在O点,另一端连接质量为m的小球,小球套在细杆上,O与细杆上A点等高,O与细杆AB在同一竖直平面内,OB竖直,OP垂直于AB,且OP=L,当小球位于细杆上A、P两点时,弹簧弹力大小相等。现将小球从细杆上的A点由静止释放,在小球沿细杆由A点运动到B点的过程中(已知重力加速度为g,弹簧一直处于弹性限度内且不弯曲),下列说法中正确的是( )A.弹簧的弹性势能先减小后增大 B.小球运动过程中弹簧弹力的瞬时功率为零的位置有两个 C.小球运动到B点时的动能为2mgL D.弹簧弹力做正功过程中小球沿杆运动的距离等于小球克服弹簧弹力做功过程中小球沿杆运动的距离如图所示,用完全相同的轻质弹簧P、Q拴接小球A,固定在竖直平面内处于静止状态,此时两弹簧的总长度恰好等于两弹簧的原长之和。已知弹簧的劲度系数为k,小球的质量为m,重力加速度为g,忽略空气阻力。下列说法正确的是( )A.弹簧P的伸长量为 B.剪断弹簧Q的瞬间,小球A的加速度大小为g C.剪断弹簧Q后,小球A的机械能守恒 D.剪断弹簧Q后,小球A做简谐运动的振幅为光滑固定斜面上物块A被平行斜面的轻质弹簧拉住静止于O点,如图所示,现将A沿斜面拉到B点无初速释放,物块在BC范围内做简谐运动,则下列说法正确的是( )A.物块从B运动到O的过程中,振动系统弹性势能与动能之和先增大后减小 B.物块从O运动到C的过程中,振动系统重力势能与动能之和不变 C.物块从C运动到B的过程中,振动系统弹性势能与重力势能之和在O处最小 D.物块从C运动到B的过程中,振动系统重力势能与动能之和在O处最大如图所示,三个小球A、B、C的质量均为m,A与B、C间通过铰链用轻杆连接,杆长为L,B、C置于水平地面上,用一轻质弹簧连接,弹簧处于原长.现A由静止释放下降到最低点,两轻杆间夹角α由60°变为120°,A、B、C在同一竖直平面内运动,弹簧在弹性限度内,忽略一切摩擦,重力加速度为g.则下列说法错误的是( )A.A的动能达到最大前,B受到地面的支持力小于mg B.A的动能最大时,B受到地面的支持力等于mg C.弹簧的弹性势能最大时,A的加速度方向竖直向上 D.弹簧的弹性势能最大值为mgL如图所示,光滑固定斜面的倾角为θ,一劲度系数为k的轻弹簧下端固定在斜面底端,弹簧上端与质量为m的物体A相连。用一根不可伸长的轻绳通过轻质光滑的定滑轮连接物体A,滑轮右侧绳子与斜面平行。当A静止不动时,弹簧的弹性势能为Ep。已知重力加速度为g。现用恒力F竖直向下拉绳的另一端,使A由静止开始沿斜面向上运动。试求:当弹簧恢复到原长时,物体A的速度大小。如图所示,半径为R=0.45m的光滑半圆弧轨道固定在竖直平面内,圆心为O1,最低点A点与光滑水平面相切,最高点B紧靠水平传送带的左端C点,CD间的距离为L=6m,物块与传送带之间的动摩擦因数为μ=0.2,传送带向右匀速运动的速度为v0=5m/s。水平地面上处于锁定状态的轻弹簧的一端固定在立柱上,另一端紧靠一质量为m=1kg的物块(可视为质点)。水平地面上有一半径为r的圆盘可以绕着O2点匀速转动,O2在传送带右端D点的正下方h=0.45m处,EF为圆盘的一条直径。现将弹簧解除锁定,物块运动到B点时受轨道的作用力为F=10N,物块到达D点时圆盘恰好转动到图示位置,物块沿O2F方向飞离D点后恰好打在圆盘边缘上的E点,取重力加速度g=10m/s2。求:(1)轻弹簧处于锁定状态时的弹性势能Ep;(2)物块在传送带上运动的时间;(3)圆盘的半径r和圆盘转动的角速度ω应满足的条件。
相关试卷
这是一份第36讲 与弹簧相关的机械能守恒问题,共16页。
这是一份第35讲 多体机械能守恒问题(原卷版),共9页。试卷主要包含了几种常见类型等内容,欢迎下载使用。
这是一份第34讲 单体机械能守恒问题(原卷版),共11页。