|课件下载
搜索
    上传资料 赚现金
    沪科版数学八年级上第15章轴对称图形与全等三角形15.3等腰三角形(第2课时) PPT课件+教学详案
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 课件
      15.3.2.pptx
    • 上海科技版中学数学八年级上第15章轴对称图形与全等三角形15.3等腰三角形(第2课时) 教学详案.docx
    沪科版数学八年级上第15章轴对称图形与全等三角形15.3等腰三角形(第2课时) PPT课件+教学详案01
    沪科版数学八年级上第15章轴对称图形与全等三角形15.3等腰三角形(第2课时) PPT课件+教学详案02
    沪科版数学八年级上第15章轴对称图形与全等三角形15.3等腰三角形(第2课时) PPT课件+教学详案03
    沪科版数学八年级上第15章轴对称图形与全等三角形15.3等腰三角形(第2课时) PPT课件+教学详案04
    沪科版数学八年级上第15章轴对称图形与全等三角形15.3等腰三角形(第2课时) PPT课件+教学详案05
    沪科版数学八年级上第15章轴对称图形与全等三角形15.3等腰三角形(第2课时) PPT课件+教学详案06
    沪科版数学八年级上第15章轴对称图形与全等三角形15.3等腰三角形(第2课时) PPT课件+教学详案07
    沪科版数学八年级上第15章轴对称图形与全等三角形15.3等腰三角形(第2课时) PPT课件+教学详案08
    沪科版数学八年级上第15章轴对称图形与全等三角形15.3等腰三角形(第2课时) PPT课件+教学详案01
    沪科版数学八年级上第15章轴对称图形与全等三角形15.3等腰三角形(第2课时) PPT课件+教学详案02
    沪科版数学八年级上第15章轴对称图形与全等三角形15.3等腰三角形(第2课时) PPT课件+教学详案03
    还剩10页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版八年级上册15.3 等腰三角形教学课件ppt

    展开
    这是一份初中数学沪科版八年级上册15.3 等腰三角形教学课件ppt,文件包含1532pptx、上海科技版中学数学八年级上第15章轴对称图形与全等三角形153等腰三角形第2课时教学详案docx等2份课件配套教学资源,其中PPT共18页, 欢迎下载使用。

    15  轴对称图形与等腰三角形

    15.3 等腰三角形

    2课时 等腰三角形的性质应用

    教学目标

    1.利用等腰三角形的性质进行相关的证明;

    2.掌握判定两个直角三角形全等的“HL”定理,运用定理进行相关的证明.

    教学重难点

    重点: 等腰三角形、等边三角形的性质.

    难点:等腰三角形、等边三角形的性质的应用.

    教学过程

    知识回顾

    定理1:等腰三角形的两个底角相等(等边对等角).

    定理2:等腰三角形顶角的平分线垂直平分底边.

    等腰三角形顶角的平分线、底边上的中线和底边上的高“三线合一”.

    推论:等边三角形的三个内角都相等,并且每一个角都等于60°.

    【师生活动】师生回顾等腰三角形的性质定理及其推论.

    新课导入

    思考:

    1.三角形全等的判定有哪些?

    2.两个直角三角形全等的判定有哪些?

    3.已知两边及其一边的对角分别相等,能否判定两个三角形全等?

    【教师活动】以问题的形式导入新课,引导学生回顾知识,为本节课做铺垫.

    典型例题

    例1 如图,在ABC中 ,ABAC,点DAC上,且BDBCAD     

    求∠A和∠C的度数.

    解:ABACBDBCAD,(已知)

    ABCCBDCAABD.(等边对等角)

    Ax,BDC A+ ABD2x,(三角形的一个外角等于和它不相邻的两个内角的和)

     ABCCBDC2x,

    A+ABC+Cx+2x+2x180°,(三角形的内角和等于180°

    解方程,得x36°

    A36°,ABCC72°.

    【教师活动】利用等腰三角形的模型引导学生说出证明思路,提示在三角形中求解角的度数,可利用三角形的内角和定理或者外角的性质.

    【学生活动】先独立思考,再与同伴交流,写出证明过程.

    【师生活动总结】在解题过程中应用方程思想,通过设未知数的方法求解.

    典型例题

    例2 求证:斜边和一条直角边分别相等的两个直角三角形全等.

    已知:如图,在RtABC 中和RtABC中,∠C= ∠C'90°,ABAB,ACAC.

    求证:RtABC Rt△ABC′.

     

    证明在平面内移动RtABCRtABC,使点A 和点A、点C和点C重合,B和点BAC的两侧

    ∵ ∠BC B90°+90°=180°,(等式性质)

    B,C,B三点在一条直线上.(平角的定义)

    在△AB B

    ABAB′,(已知)

    ∴ ∠BB(等边对等角)

    RtABCRtABC

    RtABCRtABC(AAS)

    【教师活动】引导学生分析条件和结论,根据题意画出图形,把文字语言转化为几何语言,巡视学生做题过程,随时纠正错误.

    【学生活动】根据老师的提示,写出已知、求证、小组讨论证明过程,一学生黑板板书,其余学生合作完成并交流做题过程.

    典型例题

    例3 已知,△ABC 是等边三角形,DEF分别是ABBCAC上一点,且∠DEF60°.

    1)如图1,若∠150°,求∠2

    2)如图2,连接DF,若∠1=∠3,求证:DFBC.

    分析:(1)根据等边三角形的性质和三角形的内角和解答;

    2)根据三角形的内角和和平角的定义以及平行线的判定解答.

    解:(1)∵ △ABC是等边三角形,

    ∴ ∠B=∠A=∠C60°,

    ∵ ∠B+∠1+∠DEB180°,∠DEB+∠DEF+∠2180°,

    ∵ ∠DEF60°,

    ∴ ∠1+∠DEB=∠2+∠DEB

    ∴ ∠2=∠150°;

    2)∵ ∠B+∠1+∠DEB180°,∠FDE+∠3+∠DEF180°,

    又∵ ∠B60°,∠DEF60°,∠1=∠3

    ∴ ∠FDE=∠DEB

    DFBC.

    【教师活动】引导学生分析已知条件,(1)利用三角形的内角及直线的性质证明∠1与∠2的关系;(2)要证两条直线平行,可考虑根据内错角或者同位角的相等关系证明,利用三角形的内角和及已知条件转化.

    【学生活动】根据老师的分析,小组讨论证明过程,两名学生黑板板书,其余学生合作完成并交流做题过程.

    课堂练习

    1.如图,在△ABC中,ABBCDAC上一点,且DADBCBCD,则DBC的度数是         .

    2.如图,三角形ABC中,ACBCDBC上的一点,连接  ADDF平分∠ADC交△ACB的外角∠ACE的平分线于F.

    1)求证:CFAB

    2)若∠DAC40°,求∠DFC的度数.

    3.如图所示,在RtABC中,∠C90°,BE是∠ABC的平分线,EDAB边的垂直平分线.求∠A的度数.

    4. 求证:等腰三角形底边上的中点到两腰的距离相等.

    参考答案

    1. 72°解析:∵  ABBCADBD

     A=∠C=∠ABD.

     BCCD

     CDB=∠CBD.

     CDB=∠A+∠ABD2C

     C+2C+2C180°,

     C36°,

     DBC72°.

     2.1)证明:∵  ACBC∴ ∠ABC=∠CAB

    ∴ ∠ACE=∠ABC+∠CAB2ABC.

    CF是∠ACE的平分线,∴ ∠ACE2FCE

    2ABC2FCE,∴ ∠ABC=∠FCE

    CFAB.

    2)解:∵  CF是∠ACE的平分线,

     ACE2FCE=∠ADC+∠DAC.

     DF平分∠ADC,∴  ADC2FDC

     2FCE=∠ADC+∠DAC2FDC+∠DAC

     2FCE2FDC=∠DAC.

     DFC=∠FCE﹣∠FDC

     2DFC2FCE2FDC=∠DAC40°,

     DFC20°.

     3. 解:∵  BE 是∠ABC的平分线,

      CBE=∠ABE

      EDAB边的垂直平分线,

      BEAE,∴  EBD=∠EAB

    设∠Ax°,则∠CBE=∠EBD=∠Ax°,

      C90°,∴  A+∠CBA90°,

    3x90°,解得x30°,

      A30°.   

    4.已知:如图,在△ABC中,ABACDBC的中点,DEAB,DF AC.

    求证: DEDF.

    证明: ∵  ABAC,∴  ABC=∠ACB

      DBC的中点, ∴  BDCD.

       DEAB,DF AC,  DEB=∠DFC

      EDB≌△FDCAAS),

      DEDF.

    课堂小结

    布置作业

    教材习题5.31,2,34

    板书设计

    2课时 等腰三角形的性质应用

    1.等腰三角形的三线合一

    2.文字证明题的证明步骤:
    1)根据题意写出已知和求证;

    2)画出符合题意的图形;

    3)根据已知、求证写出证明过程.

     

    教学反思

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    教学反思

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    教学反思

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    教学反思

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    相关课件

    初中数学沪科版八年级上册第15章 轴对称图形和等腰三角形15.1 轴对称图形教学课件ppt: 这是一份初中数学沪科版八年级上册第15章 轴对称图形和等腰三角形15.1 轴对称图形教学课件ppt,文件包含1513pptx、上海科技版中学数学八年级上第15章轴对称图形与全等三角形151轴对称图形第3课时教学详案docx等2份课件配套教学资源,其中PPT共29页, 欢迎下载使用。

    沪科版八年级上册15.4 角的平分线教学课件ppt: 这是一份沪科版八年级上册15.4 角的平分线教学课件ppt,文件包含1542ppt、上海科技版中学数学八年级上第15章轴对称图形与全等三角形154角的平分线第2课时教学详案docx等2份课件配套教学资源,其中PPT共21页, 欢迎下载使用。

    数学八年级上册15.4 角的平分线教学ppt课件: 这是一份数学八年级上册15.4 角的平分线教学ppt课件,文件包含1541pptx、上海科技版中学数学八年级上第15章轴对称图形与全等三角形154角的平分线第1课时教学详案docx等2份课件配套教学资源,其中PPT共18页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        沪科版数学八年级上第15章轴对称图形与全等三角形15.3等腰三角形(第2课时) PPT课件+教学详案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map