所属成套资源:高考数学必刷压轴小题(选择题+填空题)(新高考地区专用)
高考数学必刷压轴小题(选择+填空) 专题34 逆用导数的四则运算法则构造函数 (新高考地区专用)
展开
这是一份高考数学必刷压轴小题(选择+填空) 专题34 逆用导数的四则运算法则构造函数 (新高考地区专用),共11页。试卷主要包含了明确模拟练习的目的,查漏补缺,以“错”纠错,严格有规律地进行限时训练,保证常规题型的坚持训练,注重题后反思总结等内容,欢迎下载使用。
高考二轮数学复习策略第二轮复习的首要任务是把整个高中基础知识有机地结合在一起,构建出高中数学知识的结构图。下面,小编给大家带来高考数学二轮复习策略,效果是十分显著的哦!1、明确模拟练习的目的。不但检测知识的全面性、方法的熟练性和运算的准确性,更是训练书写规范,表述准确的过程。2、查漏补缺,以“错”纠错。每过一段时间,就把“错题笔记”或标记错题的试卷有侧重的看一下。查漏补缺的过程也就是反思的过程,逐渐实现保强攻弱的目标。3、严格有规律地进行限时训练。特别是强化对解答选择题、填空题的限时训练,将平时考试当作高考,严格按时完成,并在速度体验中提高正确率。4、保证常规题型的坚持训练。做到百无一失,对学有余力的学生,可适当拓展高考中难点的训练。5、注重题后反思总结。出现问题不可怕,可怕的是不知道问题的存在,在复习中出现的问题越多,说明你距离成功越近,及时处理问题,争取“问题不过夜”。6、重视每次模拟考试的临考前状态的调整及考后心理的调整。以平和的心态面对高考。 专题34 逆用导数的四则运算法则构造函数【方法点拨】1.已知中同时出现关于、,应考虑“逆用导数的四则运算法则”构造函数.2. 常见的构造函数:①对于,构造;一般的,对于,构造.②对于,构造;一般的,对于,构造.③对于,构造;一般的,对于,构造.④对于,构造;一般的,对于,构造.⑤对于,即,构造.⑥对于,构造.⑦对于,构造.⑧对于,构造.⑨对于,构造.【典型题示例】例1 已知偶函数(x≠0)的导函数为,,当x>0时,,则使成立的x的取值范围是 .(其中e为自然对数的底数)【答案】 【分析】利用构造函数,再使用函数的单调性、奇偶性即可.【解析】设,则∵x>0时,∴当x>0时,,故在(0,+∞)单增又,所以∵是偶函数 ∴也是偶函数,且在(-∞,0)单减等价于,即由是偶函数且在(0,+∞)单增得,解之得.例2 已知定义域为的函数的导函数为,且,若(2),则函数的零点个数为 A.1 B.2 C.3 D.4【答案】【分析】由的结构特征,逆向使用导数的四则运算法则构造函数,求出的解析式.【解析】由,可得,则,即,设,,又(2),所以,所以,所以,所以,,令,,令,得,当时,,单调递减,当时,,单调递增,所以的最小值为,则对于,令,可得,令,可得,所以在上单调递减,在上单调递增,所以的最小值为,当时,,当时,,所以函数的零点个数为2.故选:.点评: 作为选择题,求出后,欲判断零点个数,直接分离函数转化为与交点的个数,则秒杀!例3 函数的定义域为,,对任意,,则的解集为 .【答案】(,+)【分析】题目应归结为“解抽象函数型不等式”问题,解决方法是“逆用函数的单调性”.题目中哪个条件能让你联想到“函数的单调性”呢?注意到已知中,只需构造函数,使得,不难得到(这里为常数,本题中取),进而利用的单调性,即可找到解题的突破口.【解析】构造函数,则,故单调递增,且.另一方面所求不等式, 就转化为,逆用单调性定义易知,则不等式的解集为. 例4 设f(x)是定义在R上的可导函数,且满足f(x)+xf′(x)>0,则不等式f()>·f()的解集为________.【答案】 [1,2)【解析】设F(x)=xf(x),则由F′(x)=f(x)+xf′(x)>0,可得函数F(x)是R上的增函数.又>0,∴由f()>f()可变形得f()>f(),即F()>F(), ∴解得1≤x<2.
【巩固训练】1.(多选题)已知定义在上的函数的导函数为,且,,则下列判断中正确的是 A. B. C. D.2.已知是定义在上的奇函数,其导函数为,且当时,,则不等式的解集为 A. B.,, C.,, D.,,3.设函数是定义在上的连续函数,且在处存在导数,若函数及其导函数满足,则函数 A.既有极大值又有极小值 B.有极大值,无极小值 C.有极小值,无极大值 D.既无极大值也无极小值4.设是定义在上的可导函数,且,则不等式的解集是( )A. B. C. D. 5.定义在上的可导函数,当时,恒成立,,则的大小关系为( )A. B. C. D.6.定义在上的函数,是它的导函数,且恒有成立.则( )A. B. C. D.7.函数的导函数为,对任意的,都有成立,则( ) A. B.C. D.与的大小不确定8.函数f(x)的定义域是R,f(0)=2,对任意x∈R,f(x)+f′(x)>1,则不等式ex·f(x)>ex+1的解集为______.9.已知定义在R上的奇函数,设其导函数为,当时,恒有,则满足的实数的取值范围是 .10. 设奇函数f(x)定义在(-,0)∪(0,)上其导函数为f(x),且f()=0,当0<x<时,f(x)sinx-f(x)cosx<0,则关于x的不等式f(x)<2f()sinx的解集为 .11. 已知是定义在上的奇函数,记的导函数为,当时,满足,若存在,使不等式成立,则实数的最小值为___________.
【答案与提示】1.【答案】【分析】结合已知可构造,,结合已知可判断的单调性,结合单调性及不等式的性质即可判断.【解答】令,,因为,则,故在,上单调递减,因为,则,结合选项可知,,从而有,即,故错误,因为,结合在在,上单调递减可知,从而有,由可得,故错误;,从而有,且,即.故正确;,从而有即.故正确.故选:.2.【答案】B【解析】令,则,在时单调递增,又(1)(1),时,,时,,当时,,,,时,,,,在上恒成立,又是奇函数,,在上恒成立,①当时,,,即,②当时,,,即,由①②得不等式的解集是,,,故选:.3.【答案】C【解析】函数是定义在上的连续函数,,令,则,为常数),函数是连续函数,且在处存在导数,,,,,,,令,则,令,则,当时,,此时单调递减;当时,,此时单调递增,当时,,,使,又,函数在的两个零点,分别为和0,当时,令,则,当时,,当时,,在,上单调递增,在上单调递减,在上有极小值,无极大值.故选:.4.【答案】D【解析】构造函数,于是该函数递减,变形为,于是,得,选D.5.【答案】A【解析】构造函数,当时,,即函数单调递增,则,,则,即,选A.6.【答案】A【解析】由得,构造函数,则,故单调递增,有.故选A.7.【答案】B【解析】令,则,因为,所以在上恒成立.即函数在单调递增.因为,所以即.答案选B.8.【答案】 (0,+∞)【解析】构造函数g(x)=ex·f(x)-ex,因为g′(x)=ex·f(x)+ex·f′(x)-ex=ex[f(x)+f′(x)]-ex>ex-ex=0,所以g(x)=ex·f(x)-ex为R上的增函数.又因为g(0)=e0·f(0)-e0=1,所以原不等式转化为g(x)>g(0),解得x>0.9.【答案】10.【答案】(-,0)∪(,)【分析】这是一道难度较大的填空题,它主要考查奇函数的单调性在解不等式中的应用,奇函数的图象关于坐标原点中心对称,关于原点对称的区间上具有相同的单调性;在公共定义域上两个奇函数的积与商是偶函数,偶函数的图象关于y轴轴对称,关于原点对称的区间上具有相反的单调性,导数是研究函数单调性的重要工具,大家知道()=,(sinx)=cosx,于是本题的本质是构造来解不等式【解析】设g(x)= ,则g (x)= ()=,所以当0<x<时,g (x)<0,g(x) 在(0,)上单调递减又由于在(0,)上sinx>0,考虑到sin=,所以不等式f(x)<2f()sinx等价于<,即g(x)< g(),所以此时不等式等价于<x<.又因为f(x) 、sinx为奇函数,所以g(x)是偶函数,且在(-,0)上sinx<0,所以函数g(x)在(-,0)是单调递增函数,原不等式等价于g(x)>g(-)=,所以此时不等式等价于-<x<0,综上,原不等式的解集是(-,0)∪(,).11.【答案】【解析】令,则(当时,满足,从而在,上单调递增,所以当时,,从而当时,;当时,(当时取等号),又当时,,即,所以在,上单调递增,由于是定义在上的奇函数,从而在上单调递增;不等式.令,则原问题等价于有解,从而,,在上单减,在上单增,,所以的最小值为.
相关试卷
这是一份2022高考数学选填经典题型汇编 题型34 逆用导数的四则运算法则构造函数,共11页。
这是一份高考数学必刷压轴小题(选择+填空) 专题36 构造形求最值类问题 (新高考地区专用),共8页。试卷主要包含了明确模拟练习的目的,查漏补缺,以“错”纠错,严格有规律地进行限时训练,保证常规题型的坚持训练,注重题后反思总结等内容,欢迎下载使用。
这是一份高考数学必刷压轴小题(选择+填空) 专题33 与导数相关的极值、最值 (新高考地区专用),共10页。试卷主要包含了明确模拟练习的目的,查漏补缺,以“错”纠错,严格有规律地进行限时训练,保证常规题型的坚持训练,注重题后反思总结等内容,欢迎下载使用。