![人教版高中数学选择性必修第一册第二章2-4-2圆的一般方程习题含答案01](http://img-preview.51jiaoxi.com/3/3/14140063/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教版高中数学选择性必修第一册第二章2-4-2圆的一般方程习题含答案02](http://img-preview.51jiaoxi.com/3/3/14140063/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教版高中数学选择性必修第一册第二章2-4-2圆的一般方程习题含答案03](http://img-preview.51jiaoxi.com/3/3/14140063/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
人教版高中数学选择性必修第一册第二章2-4-2圆的一般方程习题含答案
展开2.4.2 圆的一般方程
A级 必备知识基础练
1.(多选题)若a∈-2,0,1,,方程x2+y2+2ax+2ay+2a2+a-1=0表示圆,则a的值可以为( )
A.-2 B.0 C.1 D.
2.已知圆的圆心为(-2,1),其一条直径的两个端点恰好在两坐标轴上,则这个圆的方程是( )
A.x2+y2+4x-2y-5=0
B.x2+y2-4x+2y-5=0
C.x2+y2+4x-2y=0
D.x2+y2-4x+2y=0
3.圆x2+y2-2x+4y+3=0的圆心到直线x-y=1的距离为( )
A.2 B. C.1 D.
4.已知圆C的圆心坐标为(2,-3),且点(-1,-1)在圆上,则圆C的方程为( )
A.x2+y2-4x+6y+8=0
B.x2+y2-4x+6y-8=0
C.x2+y2-4x-6y=0
D.x2+y2-4x+6y=0
5.圆C:x2+y2+4x-2y+3=0的圆心是 ,半径是 .
6.已知圆C过定点(7,2),且和圆C':x2+(y-3)2=2相切于点(1,2),则圆C的一般方程是 .
7.求圆心在直线2x-y-3=0上,且过点A(5,2)和点B(3,-2)的圆的一般方程.
B级 关键能力提升练
8.方程(x2-4)2+(y2-4)2=0表示的图形是( )
A.两个点 B.四个点
C.两条直线 D.四条直线
9.(多选题)下列结论正确的是( )
A.任何一个圆的方程都可以写成一个二元二次方程
B.圆的一般方程和标准方程可以互化
C.方程x2+y2-2x+4y+5=0表示圆
D.若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则+Dx0+Ey0+F>0
10.若圆x2+y2-4x+2y+a=0与x轴、y轴均有公共点,则实数a的取值范围是( )
A.(-∞,1] B.(-∞,0]
C.[0,+∞) D.[5,+∞)
11.一个动点在圆x2+y2=1上移动时,它与定点A(3,0)的连线中点的轨迹方程是( )
A.(x+3)2+y2=4 B.(x-3)2+y2=1
C.(2x-3)2+4y2=1 D.x+2+y2=
12.(多选题)若圆x2+y2-2x-4y=0的圆心到直线x-y+a=0的距离为,则实数a的值可能为( )
A.2 B.0 C. D.-2
13.已知圆C经过点(4,2),(1,3)和(5,1),则圆C与两坐标轴的四个截距之和为 .
14.已知圆C的方程可以表示为x2+y2-2x-4y+m=0,其中m∈R.
(1)若m=1,求圆C被直线x+y-1=0截得的弦长;
(2)若圆C与直线l:x+2y-4=0相交于M,N两点,且OM⊥ON(O为坐标原点),求m的值.
C级 学科素养创新练
15.已知点P(7,3),圆M:x2+y2-2x-10y+25=0,点Q为圆M上一点,点S在x轴上,则|SP|+|SQ|的最小值为( )
A.7 B.8 C.9 D.10
2.4.2 圆的一般方程
1.ABD 根据题意,若方程表示圆,则有(2a)2+(2a)2-4(2a2+a-1)>0,解得a<1,又a∈-2,0,1,,则a的值可以为-2,0,.
2.C 设直径的两个端点分别为A(a,0),B(0,b),圆心为点(-2,1),由线段中点坐标公式得=-2,=1,解得a=-4,b=2.∴半径r=,
∴圆的方程是(x+2)2+(y-1)2=5,即x2+y2+4x-2y=0.
3.D 因为圆心坐标为(1,-2),所以圆心到直线x-y=1的距离为d=.
4.D 易知圆C的半径为,所以圆C的标准方程为(x-2)2+(y+3)2=13,展开得一般方程为x2+y2-4x+6y=0.
5.(-2,1) 由圆C:x2+y2+4x-2y+3=0,得(x+2)2+(y-1)2=2,∴圆C的圆心坐标为(-2,1),半径为.
6.x2+y2-8x+2y-1=0 设定点(7,2)为点A,切点(1,2)为点B,圆C'的圆心C'坐标为(0,3),则直线BC'的方程为x+y-3=0.
设圆C的一般方程为x2+y2+Dx+Ey+F=0,则点C坐标为-,-,
则解得
所以圆C的一般方程是x2+y2-8x+2y-1=0.
7.解∵圆心在直线2x-y-3=0上,
∴可设圆心坐标为(a,2a-3),半径为r(r>0),
则圆的方程为(x-a)2+(y-2a+3)2=r2.
把点A(5,2)和点B(3,-2)的坐标代入方程,
得(5-a)2+(2-2a+3)2=r2, ①
(3-a)2+(-2-2a+3)2=r2, ②
由①②可得a=2,r2=10.
故所求圆的方程为(x-2)2+(y-1)2=10,
即x2+y2-4x-2y-5=0.
8.B 方程(x2-4)2+(y2-4)2=0,
则x2-4=0,且y2-4=0,
即
解得
得到4个点.
9.ABD AB显然正确;C中方程可化为(x-1)2+(y+2)2=0,所以表示点(1,-2);D正确.
10.A 圆x2+y2-4x+2y+a=0,即(x-2)2+(y+1)2=5-a,圆心(2,-1),半径r=.
∵圆与x轴、y轴都有公共点,∴解得a≤1.
11.C 设M(x0,y0)为圆上的动点,则有=1,设线段MA的中点为P(x,y),则x=,y=,
则x0=2x-3,y0=2y,代入=1,得(2x-3)2+(2y)2=1,即(2x-3)2+4y2=1.
12.AB 圆x2+y2-2x-4y=0,即(x-1)2+(y-2)2=5,它的圆心(1,2)到直线x-y+a=0的距离为,则a=0或a=2.
13.-2 设圆的方程为x2+y2+Dx+Ey+F=0,
将(4,2),(1,3),(5,1)代入方程中,
得解得
所以圆的方程为x2+y2-2x+4y-20=0.
令x=0,则y2+4y-20=0,
由根与系数的关系得y1+y2=-4;
令y=0,则x2-2x-20=0,
由根与系数的关系得x1+x2=2,
故圆C与两坐标轴的四个截距之和为y1+y2+x1+x2=-4+2=-2.
14.解(1)m=1,则圆C的标准方程为(x-1)2+(y-2)2=4,圆心(1,2)到直线的距离为,
所以圆C被直线x+y-1=0截得的弦长为2=2.
(2)设M(x1,y1),N(x2,y2),
直线代入圆的方程得5x2-8x+4(m-4)=0,
所以x1+x2=,x1x2=.
因为OM⊥ON,所以x1x2+y1y2=x1x2+(4-x1)·(4-x2)=x1x2-(x1+x2)+4=+4=0,
所以m=,此时Δ>0.
15.C 由题意知圆M的方程可化为(x-1)2+(y-5)2=1,所以圆心为M(1,5),半径为1.如图所示,作点P(7,3)关于x轴的对称点P'(7,-3),
连接MP',交圆M于点Q,交x轴于点S,此时|SP|+|SQ|的值最小,否则,在x轴上另取一点S',连接S'P,S'P',S'Q,由于P与P'关于x轴对称,所以|SP|=|SP'|,|S'P|=|S'P'|,所以|SP|+|SQ|=|SP'|+|SQ|=|P'Q|<|S'P'|+|S'Q|=|S'P|+|S'Q|.故(|SP|+|SQ|)min=|P'M|-1=-1=9.