湖北省孝感市等三地2023届九年级下学期开学考试数学试卷(含解析)
展开
这是一份湖北省孝感市等三地2023届九年级下学期开学考试数学试卷(含解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022-2023学年湖北省孝感市等三地九年级(下)开学
数学试卷
一、选择题(本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)
1.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作( )
A.10℃ B.0℃ C.﹣10℃ D.﹣20℃
2.若x=﹣1是方程x2+x+m=0的一个根,则此方程的另一个根是( )
A.﹣1 B.0 C.1 D.2
3.如图,一条河的两岸互相平行,为了测量河的宽度PT(PT与河岸PQ垂直),测量得P,Q两点间距离为m米,∠PQT=α,则河宽PT的长为( )
A.msinα B.mcosα C.mtanα D.
4.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于( )
A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:5
5.如图,点E,F,G,H分别为四边形ABCD的边AB,BC,CD,DA的中点.下列三种说法:
①四边形EFGH一定是平行四边形;
②若AC=BD,则四边形EFGH是菱形;
③若AC⊥BD,则四边形EFGH是矩形.
其中正确的是( )
A.① B.①② C.①③ D.①②③
6.如图1,点A,B,C是数轴上从左到右排列的三个点,分别对应的数为﹣5,b,4,某同学将刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点A,发现点B对应刻度1.8cm,点C对齐刻度5.4cm.
则数轴上点B所对应的数b为( )
A.3 B.﹣1 C.﹣2 D.﹣3
7.定义:min{a,b}=,若函数y=min{x+1,﹣x2+2x+3},则该函数的最大值为( )
A.0 B.2 C.3 D.4
8.如图,Rt△ACB中,∠ACB=90°,△ACB的角平分线AD,BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②AD=PF+PH;③DH平分∠CDE;④S四边形ABDE=S△ABP;⑤S△APH=S△ADE,其中正确的结论有( )个.
A.2 B.3 C.4 D.5
二、填空题(本大题共8个小题,每小题3分,共24分)
9.2022年2月4日北京冬奥会开幕,据统计当天约有57000000人次访问了奥林匹克官方网站和APP,打破了冬奥会历史纪录,这个访问量可以用科学记数法表示为 人次.
10.一元二次方程(x﹣2)(x+7)=0的根是 .
11.如图是一个正方体的展开图,将它拼成正方体后,“神”字对面的字是 .
12.若点P(2,a)关于x轴的对称点为Q(b,1),则(a+b)3的值是 .
13.如图所示,△ABC中,AB=AC,∠BAC=90°.直线l经过点A,过点B作BE⊥l于点E,过点C作CF⊥l于点F.若BE=2,CF=5,则EF= .
14.如图,l1∥l2∥l3,直线a、b与l1、l2、l3分别相交于点A、B、C和点D、E、F.若AB=5,DE=2,AC=15,则EF= .
15.当自变量﹣1≤x≤3时,函数y=|x﹣k|(k为常数)的最小值为k+3,则满足条件的k的值为 .
16.如图,在等腰直角三角形ABC和等腰直角三角形ADE中,∠BAC=∠DAE=90°,点D在BC边上,DE与AC相交于点F,AH⊥DE,垂足是G,交BC于点H.下列结论中:①AC=CD;②AD2=BC•AF;③若AD=3,DH=5,则BD=3;④AH2=DH•AC,正确的是 .
三、解答题(本大题共8个小题,共72分)
17.解方程:
(1)(x﹣1)2﹣4=0;
(2)(x+1)2=2(x+1).
18.已知,如图,△ABC中,AB=4,BC=8,D为BC边上一点,BD=2.求证:△ABD∽△CBA.
19.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF持水平,并且边DE与点B在同一直线上,已知纸板的两条边DF=0.5m,EF=0.3m,测得边DF离地面的高度AC=1.5m,CD=10m,求树高AB.
20.2022年冬奥会在我国北京和张家口举行,如图所示为冬奥会和冬残会的会徽“冬梦”“飞跃”,吉祥物“冰墩墩”“雪容融”,将四张正面分别印有以上4个图案的卡片(卡片的形状、大小、质地都相同)背面朝上洗匀.
(1)若从中随机抽取一张卡片,则抽取的卡片上的图案恰好为吉祥物“冰墩墩”的概率是 ;
(2)若从中一次同时随机抽取两张卡片,请用画树状图或列表的方法,求抽取的两张卡片上的图案正好一张是会徽另一张是吉祥物的概率.
21.如图,C,D是以AB为直径的半圆上的两点,∠CAB=∠DBA,连结BC,CD.
(1)求证:CD∥AB.
(2)若AB=4,∠ACD=30°,求阴影部分的面积.
22.建设美丽城市,改造老旧小区.某市2019年投入资金1000万元,2021年投入资金1440万元,现假定每年投入资金的增长率相同.
(1)求该市改造老旧小区投入资金的年平均增长率;
(2)2021年老旧小区改造的平均费用为每个80万元.2022年为提高老旧小区品质,每个小区改造费用增加15%.如果投入资金年增长率保持不变,求该市在2022年最多可以改造多少个老旧小区?
23.阅读材料并完成习题:
在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题.请看这个例题:如图1,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若AC=2cm,求四边形ABCD的面积.
解:延长线段CB到E,使得BE=CD,连接AE,我们可以证明△BAE≌△DAC,根据全等三角形的性质得AE=AC=2,∠EAB=∠CAD,则∠EAC=∠EAB+∠BAC=∠DAC+∠BAC=∠BAD=90°,得S四边形ABCD=S△ABC+S△ADC=SABC+SABE=S△AEC,这样,四边形ABCD的面积就转化为等腰直角三角形EAC面积.
(1)根据上面的思路,我们可以求得四边形ABCD的面积为 cm2.
(2)请你用上面学到的方法完成下面的习题.
如图2,已知FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,求五边形FGHMN的面积.
24.在△ABC中,∠B=90°,D为BC延长线上一点,点E为线段AC,CD的垂直平分线的交点,连接EA,EC,ED.
(1)如图1,当∠BAC=50°时,则∠AED= °;
(2)当∠BAC=60°时,
①如图2,连接AD,判断△AED的形状,并证明;
②如图3,直线CF与ED交于点F,满足∠CFD=∠CAE.P为直线CF上一动点.当PE﹣PD的值最大时,用等式表示PE,PD与AB之间的数量关系为 ,并证明.
参考答案
一、选择题(本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)
1.解:∵零上10℃记作+10℃,
∴零下10℃记作:﹣10℃,
故选:C.
2.解:设x2+x+m=0另一个根是α,
∴﹣1+α=﹣1,
∴α=0,
故选:B.
3.解:由题意得:
PT⊥PQ,
∴∠APQ=90°,
在Rt△APQ中,PQ=m米,∠PQT=α,
∴PT=PQ•tanα=mtanα(米),
∴河宽PT的长度是mtanα米,
故选:C.
4.解:过点O作OD⊥AC于D,OE⊥AB于E,OF⊥BC于F,
∵点O是内心,
∴OE=OF=OD,
∴S△ABO:S△BCO:S△CAO=•AB•OE:•BC•OF:•AC•OD=AB:BC:AC=2:3:4,
故选:C.
5.解:∵点E,F,G,H分别为四边形ABCD的边AB,BC,CD,DA的中点,
∴EH∥BD,GF∥BD,EF∥AC,EH=BD,EF=AC,
∴四边形EHGF是平行四边形,故①符合题意;
若AC=BD,则EF=EH,
∴平行四边形EHGF是菱形,故②符合题意;
若AC⊥BD,则EF⊥EH,
∴平行四边形EHGF是矩形,故③符合题意;
故选:D.
6.解:∵5.4÷(4+5)=0.6(cm),
∴1.8÷0.6=3,
∴﹣5+3=﹣2,
故选:C.
7.解:x+1=﹣x2+2x+3,
解得x=﹣1或x=2.
∴y=,
把x=2代入y=x+1得y=3,
∴函数最大值为y=3.
故选:C.
8.解:在△ABC中,∠ACB=90°,
∴∠CAB+∠CBA=90°,
又∵AD、BE分别平分∠BAC、∠ABC,
∴∠BAD+∠ABE=(∠CAB+∠CBA)=45°,
∴∠APB=180°﹣(∠BAD+∠ABE)=135°,故①正确.
∴∠BPD=180°﹣∠APB=45°,
又∵PF⊥AD,
∴∠FPB=90°+45°=135°,
∴∠APB=∠FPB,
在△ABP和△FBP中,
,
∴△ABP≌△FBP(ASA),
∴∠BAP=∠BFP,AB=FB,PA=PF,
∴∠PAH=∠BAP=∠PFD,
在△APH和△FPD中,
,
∴△APH≌△FPD(ASA),
∴PH=PD,
∴AD=AP+PD=PF+PH.故②正确.
∵△ABP≌△FBP,△APH≌△FPD,
∴S△APB=S△FPB,S△APH=S△FPD,PH=PD,
∵∠HPD=90°,
∴∠HDP=∠DHP=45°=∠BPD,
∴HD∥EP,
∴S△EPH=S△EPD,
∴S△APH=S△AED,故⑤正确,
∵S四边形ABDE=S△ABP+S△AEP+S△EPD+S△PBD
=S△ABP+(S△AEP+S△EPH)+S△PBD
=S△ABP+S△APH+S△PBD
=S△ABP+S△FPD+S△PBD
=S△ABP+S△FBP
=2S△ABP,故④不正确.
若DH平分∠CDE,则∠CDH=∠EDH,
∵DH∥BE,
∴∠CDH=∠CBE=∠ABE,
∴∠CDE=∠ABC,
∴DE∥AB,
这个显然与已知条件不符,故③错误,
综上所述,正确的结论有3个,
故选:B.
二、填空题(本大题共8个小题,每小题3分,共24分)
9.解:57000000人次=5.7×107人次.
故答案为:5.7×107.
10.解:(x﹣2)(x+7)=0,
x﹣2=0或x+7=0,
x1=2,x2=﹣7,
故答案为:x1=2,x2=﹣7.
11.解:由图可得,
“神”字对面的字是“月”,
故答案为:月.
12.解:∵点P(2,a)关于x轴的对称点为Q(b,1),
∴a=﹣1,b=2,
∴(a+b)3=(﹣1+2)3=1,
故答案为:1.
13.解:由题意可知,CF⊥EF,BE⊥EF,
∴∠CFA=∠AEB=90°,
∴∠FCA+∠CAF=90°,
∵∠BAC=90°,
∴∠BAE+∠CAF=90°,
∴∠BAE=∠ACF,
在△ABE和△CAF中,
,
∴△ABE≌△CAF(AAS),
∴AF=BE,FC=AE,
∴EF=AE+AF=BE+FC,
∵BE=2,CF=5,
∴EF=7,
故答案为:7.
14.解:∵l1∥l2∥l3,
∴=,
∵AB=5,DE=2,AC=15,
∴=,
解得:DF=6,
∴EF=DF﹣DE=4,
故答案为:4.
15.解:当x≥k时,函数y=|x﹣k|=x﹣k,此时y随x的增大而增大,
而﹣1≤x≤3时,函数的最小值为k+3,
∴x=﹣1时取得最小值,即有﹣1﹣k=k+3,
解得k=﹣2,(此时﹣1≤x≤3,x≥k成立),
当x<k时,函数y=|x﹣k|=﹣x+k,此时y随x的增大而减小,
而﹣1≤x≤3时,函数的最小值为k+3,
∴x=3时取得最小值,即有﹣3+k=k+3,
此时无解,
故答案为:﹣2.
16.解:①∵△ABC是等腰直角三角形,
∴∠B=∠ACB=45°,
∵∠ADC=∠B+∠BAD,
而∠BAD的度数不确定,
∴∠ADC与∠CAD不一定相等,
∴AC与CD不一定相等,
故①错误;
②∵∠BAC=∠DAE=90°,
∴∠BAD=∠CAE,
∵∠B=∠AED=45°,
∴△AEF∽△ABD,
∴=,
∵AE=AD,AB=BC,
∴AD2=AF•AB=AF•BC,
∴AD2=AF•BC,
故②正确;
④∵∠DAH=∠B=45°,∠AHD=∠AHD,
∴△ADH∽△BAH,
∴=,
∴AH2=DH•BH,
而BH与AC不一定相等,
故④不一定正确;
③∵△ADE是等腰直角三角形,
∴∠ADG=45°,
∵AH⊥DE,
∴∠AGD=90°,
∵AD=3,
∴AG=DG=,
∵DH=5,
∴GH===,
∴AH=AG+GH=2,
由④知:AH2=DH•BH,
∴(2)2=5BH,
∴BH=8,
∴BD=BH﹣DH=8﹣5=3,
故③正确;
本题正确的结论有:②③
故答案为:②③.
三、解答题(本大题共8个小题,共72分)
17.解:(1)∵(x﹣1)2﹣4=0,
∴(x﹣1)2=4,
则x﹣1=2或x﹣1=﹣2,
解得x1=3,x2=﹣1;
(2)∵(x+1)2﹣2(x+1)=0,
∴(x+1)(x﹣1)=0,
则x+1=0或x﹣1=0,
解得x1=﹣1,x2=1.
18.证明:∵AB=4,BC=8,BD=2,
∴.
∵∠ABD=∠CBA,
∴△ABD∽△CBA.
19.解:∵∠DEF=∠DCB=90°,∠EDF=∠CDB,
∴△DEF∽△DCB,
∴=,
在Rt△DEF中,
∵DF=0.5m,EF=0.3m,
由勾股定理得DE==0.4(m),
∵CD=10m,
∴=,
∴BC=7.5(m),
∴AB=AC+BC=1.5+7.5=9(m),
答:树高AB是9m.
20.解:(1)抽取的卡片上的图案恰好为吉祥物“冰墩墩”的概率是;
故答案为:;
(2)把“冬梦”“飞跃”“冰墩墩”“雪容融”图案的卡片分别记为A、B、C、D,
画树状图如下:
共有12种等可能的结果,其中两张卡片的图案正好一张是会徽另一张是吉祥物的有8种,
则两张卡片上的图案正好一张是会徽另一张是吉祥物的概率是=.
21.(1)证明:∵=,
∴∠ACD=∠DBA,
又∵∠CAB=∠DBA,
∴∠CAB=∠ACD,
∴CD∥AB.
(2)如图,连结OD,过点D作DE⊥AB,垂足为E.
∵∠ACD=30°,
∴∠AOD=60°,
∴∠BOD=180°﹣∠AOD=120°,
∴S扇形BOD=.
在Rt△ODE中,
∵DE=sin60°•OD==,
∴S△BOD===,
∴S阴影=S扇形BOD﹣S△BOD=.
∴S阴影=.
22.解:(1)设该市改造老旧小区投入资金的年平均增长率为x,
依题意得:1000(1+x)2=1440,
解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).
答:该市改造老旧小区投入资金的年平均增长率为20%.
(2)设该市在2022年可以改造y个老旧小区,
依题意得:80×(1+15%)y≤1440×(1+20%),
解得:y≤,
又∵y为整数,
∴y的最大值为18.
答:该市在2022年最多可以改造18个老旧小区.
23.解:(1)由题意可得,
AE=AC=2,∠EAC=90°,
则△EAC的面积是:=2(cm2),
即四边形ABCD的面积为2cm2,
故答案为:2;
(2)连接FH、FM,延长MN到O,截取NO=GH,
在△GFH和△NFO中,
,
∴△GFH≌△NFO(SAS),
∴FH=FO,
∵FG=FN=HM=GH+MN=2cm,GH=NO,
∴HM=OM,
在△HFM和△OFM中,
,
∴△HFM≌△OFM(SSS),
∵△OFM的面积是:=2cm2,
∴△HFM的面积是2cm2,
∴四边形HFOM的面积是4cm2,
∴五边形FGHMN的面积是4cm2.
24.解:(1)如图1中,
∵点E是线段AC,CD的垂直平分线的交点,
∴EA=EC=ED,
∴∠EAC=∠ECA,∠ECD=∠EDC,
∵∠ABC=90°,∠BAC=50°,
∴∠ACB=90°﹣50°=40°,
∴∠ACD=180°﹣40°=140°,
∴∠EAC+∠ACD+∠EDC=280°,
∴∠AED=360°﹣280°=80°,
故答案为:80.
(2)①结论:△ADE时等边三角形.
理由:如图2中,
∵点E是线段AC,CD的垂直平分线的交点,
∴EA=EC=ED,
∴∠EAC=∠ECA,∠ECD=∠EDC,
∵∠ABC=90°,∠BAC=60°,
∴∠ACB=90°﹣60°=30°,
∴∠ACD=180°﹣30°=150°,
∴∠EAC+∠ACD+∠EDC=300°,
∴∠AED=360°﹣300°=60°,
∴△ADE时等边三角形;
②结论:PE﹣PD=2AB.
理由:如图3中,作点D关于直线CF的对称点D′,连接CD′,DD′,ED′.
当点P在ED′的延长线上时,PE﹣PD的值最大,此时PE﹣PD=ED′,
∵∠CFD+∠CFE=180°,∠CFD=∠CAE,
∴∠CAE+∠CFE=180°,
∴∠ACF+∠AEF=180°,
∵∠AED=60°,
∴∠ACF=120°,
∴∠ACB=∠FCD=30°,
∴∠DCF=∠FCD′=30°,
∴∠DCD′=60°,
∵CD=CD′,
∴△CDD′时等边三角形,
∴DC=DD′,∠CDD′=∠ADE=60°,
∴∠ADC=∠EDD′,
∵DA=DE,
∴△ADC≌△EDD′(SAS),
∴AC=ED′,
∵∠B=90°,∠ACB=30°,
∴AC=2AB,
∴PE﹣PD=2AB.
故答案为:PE﹣PD=2AB.
相关试卷
这是一份湖北省孝感市云梦县2023届九年级上学期期中考试数学试卷(含解析),共16页。试卷主要包含了精心选一选,细心填一填,专心解一解等内容,欢迎下载使用。
这是一份2022年湖北省孝感市中考数学试卷(解析版),共25页。试卷主要包含了精心选一选,细心填一填,专心解一解等内容,欢迎下载使用。
这是一份湖北省孝感市应城市2022-2023学年七年级下学期期中考试数学试卷(含解析),共14页。试卷主要包含了精心选一选,相信自己的判断!,细心填一填,试试你的身手!,用心做一做,显显自己的能力!等内容,欢迎下载使用。