所属成套资源:全套人教版高中数学必修第一册习题+测评含答案
人教版高中数学必修第一册第五章5-1-1任意角习题含答案
展开
这是一份人教版高中数学必修第一册第五章5-1-1任意角习题含答案,共5页。
第五章 三角函数5.1 任意角和弧度制5.1.1 任意角A级 必备知识基础练1.(多选题)角α=45°+k·180°(k∈Z)的终边落在( )A.第一象限 B.第二象限C.第三象限 D.第四象限2.若角θ是第四象限角,则角90°+θ是( )A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角3.与-468°角的终边相同的角的集合是( )A.{α|α=k·360°+456°,k∈Z}B.{α|α=k·360°+252°,k∈Z}C.{α|α=k·360°+96°,k∈Z}D.{α|α=k·360°-252°,k∈Z}4.角α与角β的终边关于y轴对称,则α与β的关系为( )A.α+β=k·360°,k∈ZB.α+β=k·360°+180°,k∈ZC.α-β=k·360°+180°,k∈ZD.α-β=k·360°,k∈Z5.已知角α,β的终边关于直线x+y=0对称,且α=-60°,则β= . 6.与-2 022°角终边相同的最小正角是 ,最大负角是 . 7.已知角α的终边在图中阴影部分所表示的范围内(不包括边界),写出角α的集合. B级 关键能力提升练8.下列各角中,与27°角终边相同的角是( )A.63° B.153°C.207° D.387°9.已知集合M=ββ=±45°,k∈Z,P=ββ=±90°,k∈Z,则M,P之间的关系为( )A.M=P B.M⊆PC.M⊇P D.M∩P=⌀10.(多选题)已知A={第一象限角},B={锐角},C={小于90°的角},那么A,B,C的关系是( )A.B=A∩C B.B∪C=CC.B∩A=B D.A=B=C11.(多选题)已知角2α的终边在x轴的上方,那么角α可能是( )A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角12.终边落在直线y=-x上的角的集合是 . C级 学科素养创新练13.设集合M=xx=·180°+45°,k∈Z,N=xx=·180°+45°,k∈Z,那么( )A.M=N B.N⊆MC.M⊆N D.M∩N=⌀
5.1.1 任意角1.AC 当k=2m+1(m∈Z)时,α=2m·180°+225°=m·360°+225°,α为第三象限角;当k=2m(m∈Z)时,α=m·360°+45°,α为第一象限角.综上,角α的终边落在第一象限或第三象限.2.A 如图,将角θ的终边按逆时针方向旋转90°得角90°+θ的终边,则角90°+θ是第一象限角.3.B 因为-468°=-2×360°+252°,所以252°角与-468°角的终边相同,所以与-468°角的终边相同的角为k·360°+252°,k∈Z,故选B.4.B (方法1 特值法)令α=30°,β=150°,则α+β=180°,α-β=-90°,只有选项B满足条件.(方法2 直接法)因为角α与角β的终边关于y轴对称,所以β=180°-α+k·360°,k∈Z,即α+β=k·360°+180°,k∈Z.5.-30°+k·360°,k∈Z 在-90°到0°的范围内,-60°角的终边关于直线y=-x对称的射线的对应角为-30°,所以β=-30°+k·360°,k∈Z.6.138° -222° 因为-2 022°=-6×360°+138°,138°-360°=-222°,所以最小正角为138°,最大负角为-222°.7.解在0°~360°范围内,终边落在阴影部分内的角为30°<α<150°或210°<α<330°,故所有满足题意的角α的集合为{α|k·360°+30°<α<k·360°+150°,k∈Z}∪{α|k·360°+210°<α<k·360°+330°,k∈Z}={α|n·180°+30°<α<n·180°+150°,n∈Z}.8.D 与27°角终边相同的角的集合为{α|α=27°+k·360°,k∈Z},取k=1,可得α=387°,故与27°角终边相同的角是387°.故选D.9.B 对于集合M,β=±45°=k·90°±45°=(2k±1)·45°,k∈Z;对于集合P,β=±90°=k·45°±90°=(k±2)·45°,k∈Z,∴M⊆P.10.BC 对A,A∩C除了锐角,还包括其他角,比如-330°角,所以A选项错误;对B,锐角是小于90°的角,故B选项正确;对C,锐角是第一象限角,故C选项正确;对D,A,B,C中角的范围不一样,所以D选项错误.11.AC 因为角2α的终边在x轴的上方,所以k·360°<2α<k·360°+180°,k∈Z,则有k·180°<α<k·180°+90°,k∈Z.故当k=2n,n∈Z时,n·360°<α<n·360°+90°,n∈Z,α为第一象限角;当k=2n+1,n∈Z时,n·360°+180°<α<n·360°+270°,n∈Z,α为第三象限角.故选AC.12.{β|β=150°+k·180°,k∈Z} 在0°~360°范围内,终边落在直线y=-x上的角有两个,即150°角与330°角.又所有与150°角终边相同的角构成的集合S1={β|β=150°+k·360°,k∈Z},所有与330°角终边相同的角构成的集合S2={β|β=330°+k·360°,k∈Z},于是,终边落在直线y=-x上的角的集合S=S1∪S2={β|β=150°+k·360°,k∈Z}∪{β|β=330°+k·360°,k∈Z}={β|β=150°+n·180°,n∈Z}.13.C 由题意得M=xx=·180°+45°,k∈Z={x|x=(2k+1)·45°,k∈Z}.又N=xx=·180°+45°,k∈Z={x|x=(k+1)·45°,k∈Z},∴M⊆N.