2021年广东省东莞市茶山镇中考数学一模试卷
展开2021年广东省东莞市茶山镇中考数学一模试卷
一、选择题(本大题共10个小题,每题3分,满分30分.在下列每个小题给出的四个答案中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分)
1.(3分)﹣的相反数是( )
A.5 B.﹣5 C. D.﹣
2.(3分)如图所示的六角螺母,其俯视图是( )
A. B.
C. D.
3.(3分)如图,面积为1的等边三角形ABC中,D,E,F分别是AB,BC,CA的中点,则△DEF的面积是( )
A.1 B. C. D.
4.(3分)某学习小组做摸球试验,在一个不透明的袋子里装有红、黄两种颜色的小球共20个,除颜色外都相同.将球搅匀后,随机摸出5个球,发现3个是红球,估计袋中红球的个数是( )
A.12 B.9 C.8 D.6
5.(3分)如图,AD是等腰三角形ABC的顶角平分线,BD=5,则CD等于( )
A.10 B.5 C.4 D.3
6.(3分)如图,数轴上两点M,N所对应的实数分别为m,n,则m﹣n的结果可能是( )
A.﹣1 B.1 C.2 D.3
7.(3分)若关于x的一元二次方程x2﹣2mx+m2﹣4m﹣1=0有两个实数根x1,x2,且(x1+2)(x2+2)﹣2x1x2=17,则m=( )
A.2或6 B.2或8 C.2 D.6
8.(3分)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是( )
A.3(x﹣1)= B.=3
C.3x﹣1= D.=3
9.(3分)如图,四边形ABCD内接于⊙O,AB=CD,A为中点,∠BDC=60°,则∠ADB等于( )
A.40° B.50° C.60° D.70°
10.(3分)已知P1(x1,y1),P2(x2,y2)是抛物线y=ax2﹣2ax上的点,下列命题正确的是( )
A.若|x1﹣1|>|x2﹣1|,则y1>y2 B.若|x1﹣1|>|x2﹣1|,则y1<y2
C.若|x1﹣1|=|x2﹣1|,则y1=y2 D.若y1=y2,则x1=x2
二、填空题(本大题共7个小题,每题4分,满分28分.请将答案直接填写在答题卡对应的横线上)
11.(4分)分解因式:m3﹣m= .
12.(4分)已知a+2b=,3a+4b=,则a+b的值为 .
13.(4分)已知函数y=,则自变量x的取值范围是 .
14.(4分)将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为 .
15.(4分)如图所示,∠AOB是放置在正方形网格中的一个角,则sin∠AOB的值是 .
16.(4分)如图所示,若用半径为8,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是 .
17.(4分)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为 .
三、解答题(本大题共8个题,满分0分)
18.计算:4sin60°﹣|﹣2|+20200﹣+()﹣1.
19.先化简,再求值:,其中a=.
20.为了解天水市民对全市创建全国文明城市工作的满意程度,某中学数学兴趣小组在某个小区内进行了调查统计.将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.
请结合图中的信息,解决下列问题:
(1)此次调查中接受调查的人数为 人;
(2)请你补全条形统计图;
(3)扇形统计图中“满意”部分的圆心角为 度;
(4)该兴趣小组准备从调查结果为“不满意”的4位市民中随机选择2位进行回访,已知这4位市民中有2位男性,2位女性.请用画树状图的方法求出选择回访的市民为“一男一女”的概率.
21.已知关于x的一元二次方程x2+2x﹣k=0有两个不相等的实数根.
(1)求k的取值范围;
(2)若方程的两个不相等的实数根是a,b,求﹣的值.
22.如图1,在四边形ABCD中,AD∥BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.
(1)求证:直线CD与⊙O相切;
(2)如图2,记(1)中的切点为E,P为优弧上一点,AD=1,BC=2.求tan∠APE的值.
23.某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.
(1)求每个A,B类摊位占地面积各为多少平方米?
(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.
24.如图,四边形ABCD中,对角线AC与BD交于点O,且OA=OB=OC=OD=AB.
(1)求证:四边形ABCD是正方形;
(2)若H是边AB上一点(H与A,B不重合),连接DH,将线段DH绕点H顺时针旋转90°,得到线段HE,过点E分别作BC及AB延长线的垂线,垂足分别为F,G.设四边形BGEF的面积为s1,以HB,BC为邻边的矩形的面积为s2,且s1=s2.当AB=2时,求AH的长.
25.如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD.
(1)求b,c的值;
(2)求直线BD的函数解析式;
(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.
2021年广东省东莞市茶山镇中考数学一模试卷
(参考答案与详解)
一、选择题(本大题共10个小题,每题3分,满分30分.在下列每个小题给出的四个答案中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分)
1.(3分)﹣的相反数是( )
A.5 B.﹣5 C. D.﹣
【解答】解:﹣的相反数是,故选:C.
2.(3分)如图所示的六角螺母,其俯视图是( )
A. B.
C. D.
【解答】解:从上面看,是一个正六边形,六边形的中间是一个圆.
故选:B.
3.(3分)如图,面积为1的等边三角形ABC中,D,E,F分别是AB,BC,CA的中点,则△DEF的面积是( )
A.1 B. C. D.
【解答】解:∵D,E,F分别是AB,BC,CA的中点,
∴DE=AC,DF=BC,EF=AB,
∴=,
∴△DEF∽△CAB,
∴=()2=()2=,
∵等边三角形ABC的面积为1,
∴△DEF的面积是,
故选:D.
4.(3分)某学习小组做摸球试验,在一个不透明的袋子里装有红、黄两种颜色的小球共20个,除颜色外都相同.将球搅匀后,随机摸出5个球,发现3个是红球,估计袋中红球的个数是( )
A.12 B.9 C.8 D.6
【解答】解:摸到红球的频率为3÷5=0.6,
估计袋中红球的个数是20×0.6=12(个),
故选:A.
5.(3分)如图,AD是等腰三角形ABC的顶角平分线,BD=5,则CD等于( )
A.10 B.5 C.4 D.3
【解答】解:∵AD是等腰三角形ABC的顶角平分线,BD=5,
∴CD=5.
故选:B.
6.(3分)如图,数轴上两点M,N所对应的实数分别为m,n,则m﹣n的结果可能是( )
A.﹣1 B.1 C.2 D.3
【解答】解:∵M,N所对应的实数分别为m,n,
∴﹣2<n<﹣1<0<m<1,
∴1<m﹣n<3,
∴m﹣n的结果可能是2.
故选:C.
7.(3分)若关于x的一元二次方程x2﹣2mx+m2﹣4m﹣1=0有两个实数根x1,x2,且(x1+2)(x2+2)﹣2x1x2=17,则m=( )
A.2或6 B.2或8 C.2 D.6
【解答】解:∵关于x的一元二次方程x2﹣2mx+m2﹣4m﹣1=0有两个实数根x1,x2,
∴Δ=(﹣2m)2﹣4(m2﹣4m﹣1)≥0,即m≥﹣,且x1x2=m2﹣4m﹣1,x1+x2=2m,
∵(x1+2)(x2+2)﹣2x1x2=17,
∴x1x2+2(x1+x2)+4﹣2x1x2=17,即2(x1+x2)+4﹣x1x2=17,
∴4m+4﹣m2+4m+1=17,即m2﹣8m+12=0,
解得:m=2或m=6.
故选:A.
8.(3分)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是( )
A.3(x﹣1)= B.=3
C.3x﹣1= D.=3
【解答】解:依题意,得:3(x﹣1)=.
故选:A.
9.(3分)如图,四边形ABCD内接于⊙O,AB=CD,A为中点,∠BDC=60°,则∠ADB等于( )
A.40° B.50° C.60° D.70°
【解答】解:连接OA、OB、OD,OC,
∵∠BDC=60°,
∴∠BOC=2∠BDC=120°,
∵AB=DC,
∴∠AOB=∠DOC,
∵A为的中点,
∴=,
∴∠AOB=∠AOD,
∴∠AOB=∠AOD=∠DOC=×(360°﹣∠BOC)=80°,
∴∠ADB=AOB=40°,
故选:A.
10.(3分)已知P1(x1,y1),P2(x2,y2)是抛物线y=ax2﹣2ax上的点,下列命题正确的是( )
A.若|x1﹣1|>|x2﹣1|,则y1>y2 B.若|x1﹣1|>|x2﹣1|,则y1<y2
C.若|x1﹣1|=|x2﹣1|,则y1=y2 D.若y1=y2,则x1=x2
【解答】解:∵抛物线y=ax2﹣2ax=a(x﹣1)2﹣a,
∴该抛物线的对称轴是直线x=1,
当a>0时,若|x1﹣1|>|x2﹣1|,则y1>y2,故选项B错误;
当a<0时,若|x1﹣1|>|x2﹣1|,则y1<y2,故选项A错误;
若|x1﹣1|=|x2﹣1|,则y1=y2,故选项C正确;
若y1=y2,则|x1﹣1|=|x2﹣1|,故选项D错误;
故选:C.
二、填空题(本大题共7个小题,每题4分,满分28分.请将答案直接填写在答题卡对应的横线上)
11.(4分)分解因式:m3﹣m= m(m+1)(m﹣1) .
【解答】解:m3﹣m,
=m(m2﹣1),
=m(m+1)(m﹣1).
故答案为:m(m+1)(m﹣1).
12.(4分)已知a+2b=,3a+4b=,则a+b的值为 1 .
【解答】解:a+2b=①,3a+4b=②,
②﹣①得,2a+2b=2,
解得,a+b=1.
故答案为:1.
13.(4分)已知函数y=,则自变量x的取值范围是 x≥﹣2且x≠3 .
【解答】解:根据题意得:x+2≥0且x﹣3≠0,
解得:x≥﹣2且x≠3.
故答案为:x≥﹣2且x≠3.
14.(4分)将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为 (5,1)或(﹣1,5) .
【解答】解:把EO绕E点顺时针(或逆时针)旋转90°得到对应点为F(或F′),如图,
则F点的坐标为(5,1)(或F′的坐标为(﹣1,5).
故答案为(5,1)或(﹣1,5).
15.(4分)如图所示,∠AOB是放置在正方形网格中的一个角,则sin∠AOB的值是 .
【解答】解:如图,连接AB.
∵OA=AB=,OB=2,
∴OB2=OA2+AB2,
∴∠OAB=90°,
∴△AOB是等腰直角三角形,
∴∠AOB=45°,
∴sin∠AOB=,
故答案为:.
16.(4分)如图所示,若用半径为8,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是 .
【解答】解:设圆锥的底面半径为r,
由题意得,=2πr,
解得,r=,
故答案为:.
17.(4分)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为 2﹣2 .
【解答】解:如图,连接BE,BD.
由题意BD==2,
∵∠MBN=90°,MN=4,EM=NE,
∴BE=MN=2,
∴点E的运动轨迹是以B为圆心,2为半径的弧,
∴当点E落在线段BD上时,DE的值最小,
∴DE的最小值为2﹣2.(也可以用DE≥BD﹣BE,即DE≥2﹣2确定最小值)
故答案为2﹣2.
三、解答题(本大题共8个题,满分0分)
18.计算:4sin60°﹣|﹣2|+20200﹣+()﹣1.
【解答】解:4sin60°﹣|﹣2|+20200﹣+()﹣1
=4×﹣(2﹣)+1﹣2+4
=2﹣2++5﹣2
=3+.
19.先化简,再求值:,其中a=.
【解答】解:原式=﹣•
=﹣
=﹣
=
=,
当a=时,
原式==1.
20.为了解天水市民对全市创建全国文明城市工作的满意程度,某中学数学兴趣小组在某个小区内进行了调查统计.将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.
请结合图中的信息,解决下列问题:
(1)此次调查中接受调查的人数为 50 人;
(2)请你补全条形统计图;
(3)扇形统计图中“满意”部分的圆心角为 144 度;
(4)该兴趣小组准备从调查结果为“不满意”的4位市民中随机选择2位进行回访,已知这4位市民中有2位男性,2位女性.请用画树状图的方法求出选择回访的市民为“一男一女”的概率.
【解答】解:(1))∵非常满意的有18人,占36%,
∴此次调查中接受调查的人数:18÷36%=50(人);
故答案为:50;
(2)此次调查中结果为满意的人数为:50﹣4﹣8﹣18=20(人);
(3)扇形统计图中“满意”部分的圆心角为:360°×=144°;
故答案为:144°;
(4)画树状图得:
∵共有12种等可能的结果,选择回访市民为“一男一女”的有8种情况,
∴选择回访的市民为“一男一女”的概率为:=.
21.已知关于x的一元二次方程x2+2x﹣k=0有两个不相等的实数根.
(1)求k的取值范围;
(2)若方程的两个不相等的实数根是a,b,求﹣的值.
【解答】解:(1)∵方程有两个不相等的实数根,
∴Δ=b2﹣4ac=4+4k>0,
解得k>﹣1.
∴k的取值范围为k>﹣1;
(2)由根与系数关系得a+b=﹣2,a•b=﹣k,
﹣===1.
22.如图1,在四边形ABCD中,AD∥BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.
(1)求证:直线CD与⊙O相切;
(2)如图2,记(1)中的切点为E,P为优弧上一点,AD=1,BC=2.求tan∠APE的值.
【解答】(1)证明:作OE⊥CD于E,如图1所示:
则∠OEC=90°,
∵AD∥BC,∠DAB=90°,
∴∠OBC=180°﹣∠DAB=90°,
∴∠OEC=∠OBC,
∵CO平分∠BCD,
∴∠OCE=∠OCB,
在△OCE和△OCB中,,
∴△OCE≌△OCB(AAS),
∴OE=OB,
又∵OE⊥CD,
∴直线CD与⊙O相切;
(2)解:作DF⊥BC于F,连接BE,如图2所示:
则四边形ABFD是矩形,
∴AB=DF,BF=AD=1,
∴CF=BC﹣BF=2﹣1=1,
∵AD∥BC,∠DAB=90°,
∴AD⊥AB,BC⊥AB,
∴AD、BC是⊙O的切线,
由(1)得:CD是⊙O的切线,
∴ED=AD=1,EC=BC=2,
∴CD=ED+EC=3,
∴DF===2,
∴AB=DF=2,
∴OB=,
∵CO平分∠BCD,
∴CO⊥BE,
∴∠BCH+∠CBH=∠CBH+∠ABE=90°,
∴∠ABE=∠BCH,
∵∠APE=∠ABE,
∴∠APE=∠BCH,
∴tan∠APE=tan∠BCH==.
23.某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.
(1)求每个A,B类摊位占地面积各为多少平方米?
(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.
【解答】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,
根据题意得:,
解得:x=3,
经检验x=3是原方程的解,
所以3+2=5,
答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;
(2)解法一:设建A摊位a个,建造这90个摊位的费用为y元,则建B摊位(90﹣a)个,
由题意得:y=5a×40+3×30(90﹣a)=110a+8100,
∵110>0,
∴y随a的增大而增大,
∵90﹣a≥3a,
解得a≤22.5,
∵a为整数,
∴当a取最大值22时,费用最大,
此时最大费用为:110×22+8100=10520;
解法二:设建A摊位a(a为整数)个,则建B摊位(90﹣a)个,
由题意得:90﹣a≥3a,
解得a≤22.5,
∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,
∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,
此时最大费用为:22×40×5+30×(90﹣22)×3=10520,
答:建造这90个摊位的最大费用是10520元.
24.如图,四边形ABCD中,对角线AC与BD交于点O,且OA=OB=OC=OD=AB.
(1)求证:四边形ABCD是正方形;
(2)若H是边AB上一点(H与A,B不重合),连接DH,将线段DH绕点H顺时针旋转90°,得到线段HE,过点E分别作BC及AB延长线的垂线,垂足分别为F,G.设四边形BGEF的面积为s1,以HB,BC为邻边的矩形的面积为s2,且s1=s2.当AB=2时,求AH的长.
【解答】(1)证明:∵OA=OB=OC=OD,
∴四边形ABCD是平行四边形,
∴AC=BD,
∴平行四边形ABCD是矩形,
∵OA=OB=OC=OD=AB,
∴OA2+OB2=AB2,
∴∠AOB=90°,
即AC⊥BD,
∴四边形ABCD是正方形;
(2)解:∵EF⊥BC,EG⊥AG,
∴∠G=∠EFB=∠FBG=90°,
∴四边形BGEF是矩形,
∵将线段DH绕点H顺时针旋转90°,得到线段HE,
∴∠DHE=90°,DH=HE,
∴∠ADH+∠AHD=∠AHD+∠EHG=90°,
∴∠ADH=∠EHG,
∵∠DAH=∠G=90°,
∴△ADH≌△GHE(AAS),
∴AD=HG,AH=EG,
∵AB=AD,
∴AB=HG,
∴AH=BG,
∴BG=EG,
∴矩形BGEF是正方形,
设AH=x,则BG=EG=x,
∵s1=s2.
∴x2=2(2﹣x),
解得:x=﹣1(负值舍去),
∴AH=﹣1.
25.如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD.
(1)求b,c的值;
(2)求直线BD的函数解析式;
(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.
【解答】解:(1)∵BO=3AO=3,
∴点B(3,0),点A(﹣1,0),
∴抛物线解析式为:y=(x+1)(x﹣3)=x2﹣x﹣,
∴b=﹣,c=﹣;
(2)如图1,过点D作DE⊥AB于E,
∴CO∥DE,
∴,
∵BC=CD,BO=3,
∴=,
∴OE=,
∴点D横坐标为﹣,
∴点D坐标为(﹣,+1),
设直线BD的函数解析式为:y=kx+m,
由题意可得:,
解得:,
∴直线BD的函数解析式为y=﹣x+;
(3)∵点B(3,0),点A(﹣1,0),点D(﹣,+1),
∴AB=4,AD=2,BD=2+2,对称轴为直线x=1,
∵直线BD:y=﹣x+与y轴交于点C,
∴点C(0,),
∴OC=,
∵tan∠CBO==,
∴∠CBO=30°,
如图2,过点A作AK⊥BD于K,
∴AK=AB=2,
∴DK===2,
∴DK=AK,
∴∠ADB=45°,
如图,设对称轴与x轴的交点为N,即点N(1,0),
若∠CBO=∠PBO=30°,
∴BN=PN=2,BP=2PN,
∴PN=,BP=,
当△BAD∽△BPQ,
∴,
∴BQ==2+,
∴点Q(1﹣,0);
当△BAD∽△BQP,
∴,
∴BQ==4﹣,
∴点Q(﹣1+,0);
若∠PBO=∠ADB=45°,
∴BN=PN=2,BP=BN=2,
当△DAB∽△BPQ,
∴,
∴,
∴BQ=2+2
∴点Q(1﹣2,0);
当△BAD∽△PQB,
∴,
∴BQ==2﹣2,
∴点Q(5﹣2,0);
综上所述:满足条件的点Q的坐标为(1﹣,0)或(﹣1+,0)或(1﹣2,0)或(5﹣2,0).
2021年广东省东莞市可园中学中考数学一模试卷: 这是一份2021年广东省东莞市可园中学中考数学一模试卷,共8页。
2023年广东省东莞市中考数学一模试卷(含解析): 这是一份2023年广东省东莞市中考数学一模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年广东省东莞市中考数学一模试卷(含解析): 这是一份2023年广东省东莞市中考数学一模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。