|试卷下载
搜索
    上传资料 赚现金
    2022年广西贵港市中考数学试卷【含答案】
    立即下载
    加入资料篮
    2022年广西贵港市中考数学试卷【含答案】01
    2022年广西贵港市中考数学试卷【含答案】02
    2022年广西贵港市中考数学试卷【含答案】03
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年广西贵港市中考数学试卷【含答案】

    展开
    这是一份2022年广西贵港市中考数学试卷【含答案】,共31页。试卷主要包含了填空题,解答题解答应写出文字说明等内容,欢迎下载使用。

    2022年广西贵港市中考数学试卷
    一、选择题(本大题共12小题,每小题3分,共36分.)每小题都给出标号为A.B.C.D.的四个选项,其中只有一个是正确的,请考生用2B铅笔在答题卡上将选定的答案标号涂黑.
    1.(3分)﹣2的倒数是(  )
    A.2 B.﹣2 C. D.﹣
    2.(3分)一个圆锥如图所示放置,对于它的三视图,下列说法正确的是(  )

    A.主视图与俯视图相同 B.主视图与左视图相同
    C.左视图与俯视图相同 D.三个视图完全相同
    3.(3分)一组数据3,5,1,4,6,5的众数和中位数分别是(  )
    A.5,4.5 B.4.5,4 C.4,4.5 D.5,5
    4.(3分)据报道:芯片被誉为现代工业的掌上明珠,芯片制造的核心是光刻技术,我国的光刻技术水平已突破到28nm.已知1nm=10﹣9m,则28nm用科学记数法表示是(  )
    A.28×10﹣9m B.2.8×10﹣9m C.2.8×10﹣8m D.2.8×10﹣10m
    5.(3分)下列计算正确的是(  )
    A.2a﹣a=2 B.a2+b2=a2b2 C.(﹣2a)3=8a3 D.(﹣a3)2=a6
    6.(3分)若点A(a,﹣1)与点B(2,b)关于y轴对称,则a﹣b的值是(  )
    A.﹣1 B.﹣3 C.1 D.2
    7.(3分)若x=﹣2是一元二次方程x2+2x+m=0的一个根,则方程的另一个根及m的值分别是(  )
    A.0,﹣2 B.0,0 C.﹣2,﹣2 D.﹣2,0
    8.(3分)下列命题为真命题的是(  )
    A.=a
    B.同位角相等
    C.三角形的内心到三边的距离相等
    D.正多边形都是中心对称图形
    9.(3分)如图,⊙O是△ABC的外接圆,AC是⊙O的直径,点P在⊙O上,若∠ACB=40°,则∠BPC的度数是(  )

    A.40° B.45° C.50° D.55°
    10.(3分)如图,某数学兴趣小组测量一棵树CD的高度,在点A处测得树顶C的仰角为45°,在点B处测得树顶C的仰角为60°,且A,B,D三点在同一直线上,若AB=16m,则这棵树CD的高度是(  )

    A.8(3﹣)m B.8(3+)m C.6(3﹣)m D.6(3+)m
    11.(3分)如图,在4×4网格正方形中,每个小正方形的边长为1,顶点为格点,若△ABC的顶点均是格点,则cos∠BAC的值是(  )

    A. B. C. D.
    12.(3分)如图,在边长为1的菱形ABCD中,∠ABC=60°,动点E在AB边上(与点A,B均不重合),点F在对角线AC上,CE与BF相交于点G,连接AG,DF,若AF=BE,则下列结论错误的是(  )

    A.DF=CE B.∠BGC=120°
    C.AF2=EG•EC D.AG的最小值为
    二、填空题(本大题共6小题,每小题3分,共18分.)
    13.(3分)若在实数范围内有意义,则实数x的取值范围是    .
    14.(3分)因式分解:a3﹣a=   .
    15.(3分)从﹣3,﹣2,2这三个数中任取两个不同的数,作为点的坐标,则该点落在第三象限的概率是    .
    16.(3分)如图,将△ABC绕点A逆时针旋转角α(0°<α<180°)得到△ADE,点B的对应点D恰好落在BC边上,若DE⊥AC,∠CAD=25°,则旋转角α的度数是    .

    17.(3分)如图,在▱ABCD中,AD=AB,∠BAD=45°,以点A为圆心、AD为半径画弧交AB于点E,连接CE,若AB=3,则图中阴影部分的面积是    .

    18.(3分)已知二次函数y=ax2+bx+c(a≠0)图象的一部分如图所示,该函数图象经过点(﹣2,0),对称轴为直线x=﹣.对于下列结论:①abc<0;②b2﹣4ac>0;③a+b+c=0;④am2+bm<(a﹣2b)(其中m≠﹣);⑤若A(x1,y1)和B(x2,y2)均在该函数图象上,且x1>x2>1,则y1>y2.其中正确结论的个数共有    个.

    三、解答题(本大题共8小题,满分66分.)解答应写出文字说明、证明过程或演算步骤.
    19.(10分)(1)计算:|1﹣|+(2022﹣π)0+(﹣)﹣2﹣tan60°;
    (2)解不等式组:
    20.(5分)尺规作图(保留作图痕迹,不要求写出作法):
    如图,已知线段m,n.求作△ABC,使∠A=90°,AB=m,BC=n.

    21.(6分)如图,直线AB与反比例函数y=(k>0,x>0)的图象相交于点A和点C(3,2),与x轴的正半轴相交于点B.
    (1)求k的值;
    (2)连接OA,OC,若点C为线段AB的中点,求△AOC的面积.

    22.(8分)在贯彻落实“五育并举”的工作中,某校开设了五个社团活动:传统国学(A)、科技兴趣(B)、民族体育(C)、艺术鉴赏(D)、劳技实践(E),每个学生每个学期只参加一个社团活动.为了了解本学期学生参加社团活动的情况,学校随机抽取了若干名学生进行调查,并将调查结果绘制成如下两幅尚不完整的统计图.请根据统计图提供的信息,解答下列问题:

    (1)本次调查的学生共有    人;
    (2)将条形统计图补充完整;
    (3)在扇形统计图中,传统国学(A)对应扇形的圆心角度数是    ;
    (4)若该校有2700名学生,请估算本学期参加艺术鉴赏(D)活动的学生人数.
    23.(8分)为了加强学生的体育锻炼,某班计划购买部分绳子和实心球.已知每条绳子的价格比每个实心球的价格少23元,且84元购买绳子的数量与360元购买实心球的数量相同.
    (1)绳子和实心球的单价各是多少元?
    (2)如果本次购买的总费用为510元,且购买绳子的数量是实心球数量的3倍,那么购买绳子和实心球的数量各是多少?
    24.(8分)如图,在△ABC中,∠ACB=90°,点D是AB边的中点,点O在AC边上,⊙O经过点C且与AB边相切于点E,∠FAC=∠BDC.
    (1)求证:AF是⊙O的切线;
    (2)若BC=6,sinB=,求⊙O的半径及OD的长.

    25.(11分)如图,已知抛物线y=﹣x2+bx+c经过A(0,3)和B(,﹣)两点,直线AB与x轴相交于点C,P是直线AB上方的抛物线上的一个动点,PD⊥x轴交AB于点D.
    (1)求该抛物线的表达式;
    (2)若PE∥x轴交AB于点E,求PD+PE的最大值;
    (3)若以A,P,D为顶点的三角形与△AOC相似,请直接写出所有满足条件的点P,点D的坐标.

    26.(10分)已知:点C,D均在直线l的上方,AC与BD都是直线l的垂线段,且BD在AC的右侧,BD=2AC,AD与BC相交于点O.
    (1)如图1,若连接CD,则△BCD的形状为    ,的值为    ;
    (2)若将BD沿直线l平移,并以AD为一边在直线l的上方作等边△ADE.
    ①如图2,当AE与AC重合时,连接OE,若AC=,求OE的长;
    ②如图3,当∠ACB=60°时,连接EC并延长交直线l于点F,连接OF.求证:OF⊥AB.



    2022年广西贵港市中考数学试卷
    参考答案与试题解析
    一、选择题(本大题共12小题,每小题3分,共36分.)每小题都给出标号为A.B.C.D.的四个选项,其中只有一个是正确的,请考生用2B铅笔在答题卡上将选定的答案标号涂黑.
    1.(3分)﹣2的倒数是(  )
    A.2 B.﹣2 C. D.﹣
    【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.
    【解答】解:∵﹣2×()=1,
    ∴﹣2的倒数是﹣.
    故选:D.
    【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.
    2.(3分)一个圆锥如图所示放置,对于它的三视图,下列说法正确的是(  )

    A.主视图与俯视图相同 B.主视图与左视图相同
    C.左视图与俯视图相同 D.三个视图完全相同
    【分析】根据圆锥的三视图进行判定即可.
    【解答】解:圆锥的主视图和左视图都是等腰三角形,俯视图是带圆心的圆,
    所以主视图与左视图相同,
    故选:B.
    【点评】本题考查简单几何体的三视图,掌握各种几何体的三视图的形状是正确判断的关键.
    3.(3分)一组数据3,5,1,4,6,5的众数和中位数分别是(  )
    A.5,4.5 B.4.5,4 C.4,4.5 D.5,5
    【分析】根据众数和中位数的定义直接求解即可.一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
    【解答】解:这组数据中5出现的次数最多,故众数为5;
    这组数据按照从小到大的顺序排列好为:1、3、4、5、5、6,故中位数为=4.5,
    故选:A.
    【点评】本题主要考查众数和中位数,熟练掌握众数和中位数的定义是解答此题的关键.
    4.(3分)据报道:芯片被誉为现代工业的掌上明珠,芯片制造的核心是光刻技术,我国的光刻技术水平已突破到28nm.已知1nm=10﹣9m,则28nm用科学记数法表示是(  )
    A.28×10﹣9m B.2.8×10﹣9m C.2.8×10﹣8m D.2.8×10﹣10m
    【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.
    【解答】解:因为1nm=10﹣9m,
    所以28nm=28×10﹣9m=2.8×10﹣8m.
    故选:C.
    【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.
    5.(3分)下列计算正确的是(  )
    A.2a﹣a=2 B.a2+b2=a2b2 C.(﹣2a)3=8a3 D.(﹣a3)2=a6
    【分析】根据合并同类项法则,可判断A和B;根据积的乘方和幂的乘方,可判断C和D.
    【解答】解:A、2a﹣a=a,故A错误;
    B、a2与b2不能合并,故B错误;
    C、(﹣2a)3=﹣8a3,故C错误;
    D、(﹣a3)2=a6,故D正确;
    故选:D.
    【点评】本题考查了合并同类项法则,积的乘方和幂的乘方,根据法则计算是解题关键.
    6.(3分)若点A(a,﹣1)与点B(2,b)关于y轴对称,则a﹣b的值是(  )
    A.﹣1 B.﹣3 C.1 D.2
    【分析】根据两点关于y轴对称的点的坐标的特点列出有关a、b的方程求解即可求得a﹣b的值.
    【解答】解:∵点A(a,﹣1)与点B(2,b)关于y轴对称,
    ∴a=﹣2,b=﹣1,
    ∴a﹣b=﹣2﹣(﹣1)=﹣1,
    故选:A.
    【点评】本题考查了关于坐标轴对称的点的坐标的知识,牢记点的坐标的变化规律是解决此类题目的关键.
    7.(3分)若x=﹣2是一元二次方程x2+2x+m=0的一个根,则方程的另一个根及m的值分别是(  )
    A.0,﹣2 B.0,0 C.﹣2,﹣2 D.﹣2,0
    【分析】设方程的另一根为a,由根与系数的关系可得到a的方程,可求得m的值,即可求得方程的另一根.
    【解答】解:设方程的另一根为a,
    ∵x=﹣2是一元二次方程x2+2x+m=0的一个根,
    ∴4﹣4+m=0,
    解得m=0,
    则﹣2a=0,
    解得a=0.
    故选:B.
    【点评】本题主要考查一元二次方程根与系数的关系,一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=﹣,x1•x2=.
    8.(3分)下列命题为真命题的是(  )
    A.=a
    B.同位角相等
    C.三角形的内心到三边的距离相等
    D.正多边形都是中心对称图形
    【分析】根据判断命题真假的方法即可求解.
    【解答】解:A.当a<0时,原式=﹣a,故原命题为假命题,此选项不符合题意;
    B.当两直线平行时,同位角才相等,故原命题为假命题,此选项不符合题意;
    C.三角形的内心为三角形内切圆的圆心,故到三边的距离相等,故原命题为真命题,此选项符合题意;
    D.三角形不是中心对称图形,故原命题为假命题,此选项不符合题意,
    故选:C.
    【点评】本题考查了真假命题的判断,理解三角形内心的概念是解题的关键.
    9.(3分)如图,⊙O是△ABC的外接圆,AC是⊙O的直径,点P在⊙O上,若∠ACB=40°,则∠BPC的度数是(  )

    A.40° B.45° C.50° D.55°
    【分析】根据直径所对的圆周角是直角得到∠ABC=90°,进而求出∠CAB,根据圆周角定理解答即可.
    【解答】解:∵AC是⊙O的直径,
    ∴∠ABC=90°,
    ∴∠ACB+∠CAB=90°,
    ∵∠ACB=40°,
    ∴∠CAB=90°﹣40°=50°,
    由圆周角定理得:∠BPC=∠CAB=50°,
    故选:C.
    【点评】本题考查的是圆周角定理,掌握直径所对的圆周角是直角是解题的关键.
    10.(3分)如图,某数学兴趣小组测量一棵树CD的高度,在点A处测得树顶C的仰角为45°,在点B处测得树顶C的仰角为60°,且A,B,D三点在同一直线上,若AB=16m,则这棵树CD的高度是(  )

    A.8(3﹣)m B.8(3+)m C.6(3﹣)m D.6(3+)m
    【分析】设AD=x米,则BD=(16﹣x)米,在Rt△ADC中,利用锐角三角函数的定义求出CD的长,然后在Rt△CDB中,利用锐角三角函数列出关于x的方程,进行计算即可解答.
    【解答】解:设AD=x米,
    ∵AB=16米,
    ∴BD=AB﹣AD=(16﹣x)米,
    在Rt△ADC中,∠A=45°,
    ∴CD=AD•tan45°=x(米),
    在Rt△CDB中,∠B=60°,
    ∴tan60°===,
    ∴x=24﹣8,
    经检验:x=24﹣8是原方程的根,
    ∴CD=(24﹣8)米,
    ∴这棵树CD的高度是(24﹣8)米,
    故选:A.

    【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解题的关键.
    11.(3分)如图,在4×4网格正方形中,每个小正方形的边长为1,顶点为格点,若△ABC的顶点均是格点,则cos∠BAC的值是(  )

    A. B. C. D.
    【分析】延长AC到D,连接BD,由网格可得AD2+BD2=AB2,即得∠ADB=90°,可求出答案.
    【解答】解:延长AC到D,连接BD,如图:

    ∵AD2=20,BD2=5,AB2=25,
    ∴AD2+BD2=AB2,
    ∴∠ADB=90°,
    ∴cos∠BAC===,
    故选:C.
    【点评】本题考查网格中的锐角三角函数,解题的关键是作辅助线,构造直角三角形.
    12.(3分)如图,在边长为1的菱形ABCD中,∠ABC=60°,动点E在AB边上(与点A,B均不重合),点F在对角线AC上,CE与BF相交于点G,连接AG,DF,若AF=BE,则下列结论错误的是(  )

    A.DF=CE B.∠BGC=120°
    C.AF2=EG•EC D.AG的最小值为
    【分析】根据菱形的性质,利用SAS证明△ADF≌△BCE,可得DF=CE,故A正确;利用菱形的轴对称知,△BAF≌△DAF,得∠ADF=∠ABF,则∠BGC=180°﹣(∠GBC+∠GCB)=180°﹣∠CBE=120°,故B正确,利用△BEG∽△CEB,得,且AF=BE,可得C正确,利用定角对定边可得点G在以O为圆心,OB为半径的圆上运动,连接AO,交⊙O于G,此时AG最小,AO是BC的垂直平分线,利用含30°角的直角三角形的性质可得AG的最小值,从而解决问题.
    【解答】解:∵四边形ABCD是菱形,∠ABC=60°,
    ∴∠BAD=120°,BC=AD,∠DAC=∠BAD=60°,
    ∴∠DAF=∠CBE,
    ∵BE=AF,
    ∴△ADF≌△BCE(SAS),
    ∴DF=CE,∠BCE=∠ADF,故A正确,不符合题意;
    ∵AB=AD,∠BAF=∠DAF,AF=AF,
    ∴△BAF≌△DAF(SAS),
    ∴∠ADF=∠ABF,
    ∴∠ABF=∠BCE,
    ∴∠BGC=180°﹣(∠GBC+∠GCB)=180°﹣∠CBE=120°,故B正确,不符合题意;
    ∵∠EBB=∠ECB,∠BEG=∠CEB,
    ∴△BEG∽△CEB,
    ∴,
    ∴BE2=CE×EG,
    ∵BE=AF,
    ∴AF2=EG•EC,故C正确,不符合题意;
    以BC为底边,在BC的下方作等腰△OBC,使∠OBC=∠OCB=30°,

    ∵∠BGC=120°,BC=1,
    ∴点G在以O为圆心,OB为半径的圆上运动,
    连接AO,交⊙O于G,此时AG最小,AO是BC的垂直平分线,
    ∵OB=OC,∠BOC=120°,
    ∴∠BCO=30°,
    ∴∠ACO=90°,
    ∴∠OAG=30°,
    ∴OC=,
    ∴AO=2OC=,
    ∴AG的最小值为AO﹣OC=,故D错误,符合题意.
    故选:D.
    【点评】本题主要考查了菱形的性质,全等三角形的判定与性质,相似三角形的判定与性质,利用定边对定角确定点G的运动路径是解题的关键.
    二、填空题(本大题共6小题,每小题3分,共18分.)
    13.(3分)若在实数范围内有意义,则实数x的取值范围是  x≥﹣1 .
    【分析】根据二次根式有意义的条件,列出不等式,解不等式即可.
    【解答】解:根据题意得:x+1≥0,
    ∴x≥﹣1,
    故答案为:x≥﹣1.
    【点评】本题考查了二次根式有意义的条件,掌握二次根式有意义的条件:被开方数大于或等于0是解题的关键.
    14.(3分)因式分解:a3﹣a= a(a+1)(a﹣1) .
    【分析】原式提取a,再利用平方差公式分解即可.
    【解答】解:原式=a(a2﹣1)=a(a+1)(a﹣1),
    故答案为:a(a+1)(a﹣1)
    【点评】此题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
    15.(3分)从﹣3,﹣2,2这三个数中任取两个不同的数,作为点的坐标,则该点落在第三象限的概率是   .
    【分析】根据第三象限的点的坐标需要选两个负数得出结论即可.
    【解答】解:∵第三象限的点的坐标需要选两个负数,
    ∴该点落在第三象限的概率是×=,
    故答案为:.
    【点评】本题主要考查概率的知识,根据第三象限的点的坐标需要选两个负数计算概率是解题的关键.
    16.(3分)如图,将△ABC绕点A逆时针旋转角α(0°<α<180°)得到△ADE,点B的对应点D恰好落在BC边上,若DE⊥AC,∠CAD=25°,则旋转角α的度数是  50° .

    【分析】先求出∠ADE的度数,然后由旋转的性质和等腰三角形的性质分析求解.
    【解答】解:根据题意,
    ∵DE⊥AC,∠CAD=25°,
    ∴∠ADE=90°﹣25°=65°,
    由旋转的性质可得∠B=∠ADE,AB=AD,
    ∴∠ADB=∠B=65°,
    ∴∠BAD=180°﹣65°﹣65°=50°,
    ∴旋转角α的度数是50°;
    故答案为:50°.
    【点评】本题考查了旋转的性质,三角形的内角和定理,解题的关键是熟练掌握旋转的性质进行计算.
    17.(3分)如图,在▱ABCD中,AD=AB,∠BAD=45°,以点A为圆心、AD为半径画弧交AB于点E,连接CE,若AB=3,则图中阴影部分的面积是  5﹣π .

    【分析】过点D作DF⊥AB于点F,根据等腰直角三角形的性质求得DF,从而求得EB,最后由S阴影=S▱ABCD−S扇形ADE−S△EBC结合扇形面积公式、平行四边形面积公式、三角形面积公式解题即可.
    【解答】解:过点D作DF⊥AB于点F,

    ∵AD=AB,∠BAD=45°,AB=3,
    ∴AD=×3=2,
    ∴DF=ADsin45°=2×=2,
    ∵AE=AD=2,
    ∴EB=AB−AE=,
    ∴S阴影=S▱ABCD−S扇形ADE−S△EBC
    =3×2﹣﹣××2
    =5﹣π,
    故答案为:5﹣π.
    【点评】本题考查等腰直角三角形、平行四边形的性质、扇形的面积公式等知识,是重要考点,准确添加辅助线是解题关键.
    18.(3分)已知二次函数y=ax2+bx+c(a≠0)图象的一部分如图所示,该函数图象经过点(﹣2,0),对称轴为直线x=﹣.对于下列结论:①abc<0;②b2﹣4ac>0;③a+b+c=0;④am2+bm<(a﹣2b)(其中m≠﹣);⑤若A(x1,y1)和B(x2,y2)均在该函数图象上,且x1>x2>1,则y1>y2.其中正确结论的个数共有  3 个.

    【分析】根据抛物线与x轴的一个交点(﹣2,0)以及其对称轴,求出抛物线与x轴的另一个交点(1,0),利用待定系数法求函数解析式,再根据抛物线开口朝下,可得a<0,进而可得b<0,c>0,再结合二次函数的图象和性质逐条判断即可.
    【解答】解:∵抛物线的对称轴为直线x=﹣,且抛物线与x轴的一个交点坐标为(﹣2,0),
    ∴抛物线与x轴的另一个坐标为(1,0),
    把(﹣2,0)(1,0)代入y=ax2+bx+c(a≠0),可得:

    解得,
    ∴a+b+c=a+a﹣2a=0,故③正确;
    ∵抛物线开口方向向下,
    ∴a<0,
    ∴b=a<0,c=﹣2a>0,
    ∴abc>0,故①错误;
    ∵抛物线与x轴两个交点,
    ∴当y=0时,方程ax2+bx+c=0有两个不相等的实数根,
    ∴b2﹣4ac>0,故②正确;
    ∵am2+bm=am2+am=a(m+)2﹣a,
    (a﹣2b)=(a﹣2a)=﹣a,
    ∴am2+bm﹣(a﹣2b)=a(m+)2,
    又∵a<0,m≠﹣,
    ∴a(m+)2<0,
    即am2+bm<(a﹣2b)(其中m≠﹣),故④正确;
    ∵抛物线的对称轴为直线x=﹣,且抛物线开口朝下,
    ∴可知二次函数,在x>﹣时,y随x的增大而减小,
    ∵x1>x2>1>﹣,
    ∴y1<y2,故⑤错误,
    正确的有②③④,共3个,
    故答案为:3.
    【点评】本题考查了二次函数的图象与性质、二次函数和一元二次方程的关系等知识,掌握二次函数的性质,利用数形结合思想解题是关键.
    三、解答题(本大题共8小题,满分66分.)解答应写出文字说明、证明过程或演算步骤.
    19.(10分)(1)计算:|1﹣|+(2022﹣π)0+(﹣)﹣2﹣tan60°;
    (2)解不等式组:
    【分析】(1)根据绝对值的性质,零指数幂,负整数指数幂,特殊角的三角函数值解答即可;
    (2)分别解出两个不等式,再写出不等式组的解集即可.
    【解答】解:(1)原式=﹣1+1+4﹣
    =4;
    (2)解不等式①,得:x<,
    解不等式②,得:x≥﹣1,
    ∴不等式组的解集为﹣1≤x.
    【点评】本题主要考查了绝对值的性质,零指数幂,负整数指数幂,特殊角的三角函数值,解一元一次不等式组,熟练掌握相关的知识是解答本题的关键.
    20.(5分)尺规作图(保留作图痕迹,不要求写出作法):
    如图,已知线段m,n.求作△ABC,使∠A=90°,AB=m,BC=n.

    【分析】先在直线l上取点A,过A点作AD⊥l,再在直线l上截取AB=m,然后以B点为圆心,n为半径画弧交AD于C,则△ABC满足条件.
    【解答】解:如图,△ABC为所作.

    【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图是解决问题的关键.
    21.(6分)如图,直线AB与反比例函数y=(k>0,x>0)的图象相交于点A和点C(3,2),与x轴的正半轴相交于点B.
    (1)求k的值;
    (2)连接OA,OC,若点C为线段AB的中点,求△AOC的面积.

    【分析】(1)根据反比例函数图象上点的坐标特征求出k;
    (2)求出点A的坐标,利用待定系数法求出直线AC的解析式,进而求出OB,根据三角形的面积公式计算,得到答案.
    【解答】解:(1)∵点C(3,2)在反比例函数y=的图象上,
    ∴=2,
    解得:k=6;
    (2)∵点C(3,2)是线段AB的中点,
    ∴点A的纵坐标为4,
    ∴点A的横坐标为:=,
    ∴点A的坐标为(,4),
    设直线AC的解析式为:y=ax+b,
    则,
    解得:,
    ∴直线AC的解析式为:y=﹣x+6,
    当y=0时,x=,
    ∴OB=,
    ∵点C是线段AB的中点,
    ∴S△AOC=S△AOB=×××4=.
    【点评】本题考查的是反比例函数图象上点的坐标特征、三角形的面积公式,灵活运用待定系数法求出直线AC的解析式是解题的关键.
    22.(8分)在贯彻落实“五育并举”的工作中,某校开设了五个社团活动:传统国学(A)、科技兴趣(B)、民族体育(C)、艺术鉴赏(D)、劳技实践(E),每个学生每个学期只参加一个社团活动.为了了解本学期学生参加社团活动的情况,学校随机抽取了若干名学生进行调查,并将调查结果绘制成如下两幅尚不完整的统计图.请根据统计图提供的信息,解答下列问题:

    (1)本次调查的学生共有  90 人;
    (2)将条形统计图补充完整;
    (3)在扇形统计图中,传统国学(A)对应扇形的圆心角度数是  120° ;
    (4)若该校有2700名学生,请估算本学期参加艺术鉴赏(D)活动的学生人数.
    【分析】(1)用E社团人数除以20%即可得出样本容量;
    (2)用样本容量分别减去其它社团人数,即可得出C社团人数,进而补全条形统计图;
    (3)用360°乘A社团人数所占比例即可得出传统国学(A)对应扇形的圆心角度数;
    (4)利用样本估计总体即可.
    【解答】解:(1)本次调查的学生共有:18÷20%=90(人),
    故答案为:90;
    (2)C社团人数为:90﹣30﹣10﹣10﹣18=22(人),
    补全条形统计图如下:

    (3)在扇形统计图中,传统国学(A)对应扇形的圆心角度数是360°×=120°,
    故答案为:120°;
    (4)2700×=300(人),
    答:该校本学期参加艺术鉴赏(D)活动的学生人数大约有300人.
    【点评】本题考查条形统计图、扇形统计图的意义和制作方法,掌握两个统计图中数量关系是正确解答的前提.
    23.(8分)为了加强学生的体育锻炼,某班计划购买部分绳子和实心球.已知每条绳子的价格比每个实心球的价格少23元,且84元购买绳子的数量与360元购买实心球的数量相同.
    (1)绳子和实心球的单价各是多少元?
    (2)如果本次购买的总费用为510元,且购买绳子的数量是实心球数量的3倍,那么购买绳子和实心球的数量各是多少?
    【分析】(1)设绳子的单价为x元,则实心球的单价为(x+23)元,根据数量=总价÷单价且84元购买绳子的数量与360元购买实心球的数量相同,列出分式方程并解答即可;
    (2)设购买实心球的数量为m个,则购买绳子的数量为3m条,根据费用等于单价×数量列出方程解答即可.
    【解答】解:(1)设绳子的单价为x元,则实心球的单价为(x+23)元,
    根据题意,得,
    解得x=7,
    经检验可知x=7是所列分式方程的解,且满足实际意义,
    ∴x+23=30,
    答:绳子的单价为7元,实心球的单价为30元.
    (2)设购买实心球的数量为m个,则购买绳子的数量为3m条,
    根据题意,得7×3m+30m=510,
    解得m=10,
    ∴3m=30,
    答:购买绳子的数量为30条,购买实心球的数量为10个.
    【点评】本题考查了分式方程和一元一次方程.,解题的关键是找准等量关系,正确列出分式方程和一元一次方程.
    24.(8分)如图,在△ABC中,∠ACB=90°,点D是AB边的中点,点O在AC边上,⊙O经过点C且与AB边相切于点E,∠FAC=∠BDC.
    (1)求证:AF是⊙O的切线;
    (2)若BC=6,sinB=,求⊙O的半径及OD的长.

    【分析】(1)作OH⊥FA,垂足为H,连接OE,利用直角三角形斜边上中线的性质得AD=CD,再通过导角得出AC是∠FAB的平分线,再利用角平分线的性质可得OH=OE,从而证明结论;
    (2)根据BC=6,sinB=,可得AC=8,AB=10,设⊙O的半径为r,则OC=OE=r,利用Rt△AOE∽Rt△ABC,可得r的值,再利用勾股定理求出OD的长.
    【解答】(1)证明:如图,作OH⊥FA,垂足为H,连接OE,

    ∵∠ACB=90°,D是AB的中点,
    ∴CD=AD=,
    ∴∠CAD=∠ACD,
    ∵∠BDC=∠CAD+∠ACD=2∠CAD,
    又∵∠FAC=,
    ∴∠FAC=∠CAB,
    即AC是∠FAB的平分线,
    ∵点O在AC上,⊙O与AB相切于点E,
    ∴OE⊥AB,且OE是⊙O的半径,
    ∴OH=OE,OH是⊙O的半径,
    ∴AF是⊙O的切线;
    (2)解:如图,在△ABC中,∠ACB=90°,BC=6,sinB=,
    ∴可设AC=4x,AB=5x,
    ∴(5x)2﹣(4x)2=62,
    ∴x=2,
    则AC=8,AB=10,
    设⊙O的半径为r,则OC=OE=r,
    ∵Rt△AOE∽Rt△ABC,
    ∴,
    即,
    ∴r=3,
    ∴AE=4,
    又∵AD=5,
    ∴DE=1,
    在Rt△ODE中,由勾股定理得:OD=.
    【点评】本题主要考查了圆的切线的性质和判定,直角三角形的性质,三角函数,相似三角形的判定与性质,勾股定理等知识,熟练掌握切线的判定与性质是解题的关键.
    25.(11分)如图,已知抛物线y=﹣x2+bx+c经过A(0,3)和B(,﹣)两点,直线AB与x轴相交于点C,P是直线AB上方的抛物线上的一个动点,PD⊥x轴交AB于点D.
    (1)求该抛物线的表达式;
    (2)若PE∥x轴交AB于点E,求PD+PE的最大值;
    (3)若以A,P,D为顶点的三角形与△AOC相似,请直接写出所有满足条件的点P,点D的坐标.

    【分析】(1)直接利用待定系数法,即可求出解析式;
    (2)先求出点C的坐标,然后证明Rt△DPE∽Rt△AOC,再由二次函数的最值性质,求出答案;
    (3)根据题意,可分为两种情况进行分析:当△AOC∽△APD时;当△AOC∽△DAP时;分别求出两种情况的点的坐标,即可得到答案.
    【解答】解:(1)将A(0,3)和B(,﹣)代入y=﹣x2+bx+c,

    解得,
    ∴该抛物线的解析式为y=﹣x2+2x+3;
    (2)设直线AB的解析式为y=kx+n,把A(0,3)和B(,﹣)代入,

    解得,
    ∴直线AB的解析式为y=﹣x+3,
    当y=0时,﹣x+3=0,
    解得:x=2,
    ∴C点坐标为(2,0),
    ∵PD⊥x轴,PE∥x轴,
    ∴∠ACO=∠DEP,
    ∴Rt△DPE∽Rt△AOC,
    ∴,
    ∴PE=PD,
    ∴PD+PE=PD,
    设点P的坐标为(a,﹣a2+2a+3),则D点坐标为(a,﹣a+3),
    ∴PD=(﹣a2+2a+3)﹣(﹣a+3)=﹣(a﹣)2+,
    ∴PD+PE=﹣(a﹣)2+,
    ∵﹣<0,
    ∴当a=时,PD+PE有最大值为;
    (3)①当△AOC∽△APD时,
    ∵PD⊥x轴,∠DPA=90°,
    ∴点P纵坐标是3,横坐标x>0,
    即﹣x2+2x+3=3,解得x=2,
    ∴点D的坐标为(2,0);
    ∵PD⊥x轴,
    ∴点P的横坐标为2,
    ∴点P的纵坐标为:y=﹣22+2×2+3=3,
    ∴点P的坐标为(2,3),点D的坐标为(2,0);
    ②当△AOC∽△DAP时,

    此时∠APG=∠ACO,
    过点A作AG⊥PD于点G,
    ∴△APG∽△ACO,
    ∴,
    设点P的坐标为(m,﹣m2+2m+3),则D点坐标为(m,﹣m+3),
    则,
    解得:m=,
    ∴D点坐标为(,1),P点坐标为(,),
    综上,点P的坐标为(2,3),点D的坐标为(2,0)或P点坐标为(,),D点坐标为(,1).
    【点评】本题考查了二次函数的图象和性质,坐标与图形,相似三角形的判定和性质,熟练掌握相似三角形的判定和性质,二次函数的图象和性质,运用数形结合和分类讨论的思想解题是关键.
    26.(10分)已知:点C,D均在直线l的上方,AC与BD都是直线l的垂线段,且BD在AC的右侧,BD=2AC,AD与BC相交于点O.
    (1)如图1,若连接CD,则△BCD的形状为  等腰三角形 ,的值为   ;
    (2)若将BD沿直线l平移,并以AD为一边在直线l的上方作等边△ADE.
    ①如图2,当AE与AC重合时,连接OE,若AC=,求OE的长;
    ②如图3,当∠ACB=60°时,连接EC并延长交直线l于点F,连接OF.求证:OF⊥AB.


    【分析】(1)过点C作CH⊥BD于H,可得四边形ABHC是矩形,即可求得AC=BH,进而可判断△BCD的形状,AC、BD都垂直于l,可得△AOC∽△BOD,根据三角形相似的性质即可求解.
    (2)①过点E作EF⊥AD于点H,AC,BD均是直线l的垂线段,可得AC∥BD,根据等边三角形的性质和利用勾股定理即可求解.
    ②连接CD,通过判定△BCD是等边三角形和△AOF∽△ADB,根据三角形相似的性质即可求证结论.
    【解答】解:(1)如图1,过点C作CH⊥BD于H,

    ∵AC⊥l,DB⊥l,CH⊥BD,
    ∴∠CAB=∠ABD=∠CHB=90°,
    ∴四边形ABHC是矩形,
    ∴AC=BH,
    又∵BD=2AC,
    ∴AC=BH=DH,且CH⊥BD,
    ∴△BCD的形状为等腰三角形,
    ∵AC、BD都垂直于l,
    ∴△AOC∽△BOD,
    ∴,即DO=2AO,
    ∴,
    故答案为:等腰三角形,;
    (2)①如图2,过点E作EH⊥AD于点H,

    ∵AC,BD均是直线l的垂线段,
    ∴AC∥BD,
    ∵△ADE是等边三角形,且AE与AC重合,
    ∴∠EAD=60°,
    ∴∠ADB=∠EAD=60°,
    ∴∠BAD=30°,
    ∴在Rt△ADB中,AD=2BD,AB=BD,
    又∵BD=2AC,AC=,
    ∴AD=6,AB=3,
    ∴AH=DH=AD=3,AO=AD=2,
    ∴OH=1,
    由旋转性质可得EH=AB=3,
    在Rt△EOH中,OE=2;
    ②如图3,连接CD,

    ∵AC∥BD,
    ∴∠CBD=∠ACB=60°,
    ∵△BCD是等腰三角形,
    ∴△BCD是等边三角形,
    又∵△ADE是等边三角形,
    ∴△ABD绕点D顺时针旋转60°后与△ECD重合,
    ∴∠ECD=∠ABD=90°,
    又∵∠BCD=∠ACB=60°,
    ∴∠ACF=∠FCB=∠FBC=30°,
    ∴FC=FB=2AF,
    ∴,
    又∵∠OAF=∠DAB,
    ∴△AOF∽△ADB,
    ∴∠AFO=∠ABD=90°,
    ∴OF⊥AB.
    【点评】本题考查了矩形的判定及性质、三角形相似的判定及性质、等边三角形的判定及性质、勾股定理的应用,熟练掌握三角形相似的判定及性质和勾股定理的应用,准确添加辅助线是解题的关键.


    相关试卷

    2019年广西贵港市中考数学试卷及答案: 这是一份2019年广西贵港市中考数学试卷及答案,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2019年广西贵港市中考数学试卷与答案: 这是一份2019年广西贵港市中考数学试卷与答案,共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022年广西贵港市中考数学试卷及答案: 这是一份2022年广西贵港市中考数学试卷及答案,共6页。试卷主要包含了填空题,解答题解答应写出文字说明等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map