年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    高考数学真题专题训练 14数列综合(含解析)

    高考数学真题专题训练  14数列综合(含解析)第1页
    高考数学真题专题训练  14数列综合(含解析)第2页
    高考数学真题专题训练  14数列综合(含解析)第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学真题专题训练 14数列综合(含解析)

    展开

    这是一份高考数学真题专题训练 14数列综合(含解析),共27页。试卷主要包含了设数列{an}满足a1=3,.,已知是无穷数列.给出两个性质,已知公比大于的等比数列满足.,已知为等差数列,为等比数列,.等内容,欢迎下载使用。
    专题14 数列综合

    1.(新课标Ⅰ)设是公比不为1的等比数列,为,的等差中项.
    (1)求的公比;
    (2)若,求数列的前项和.
    【答案】(1)-2;(2).
    【解析】
    (1)设的公比为,为的等差中项,


    (2)设的前项和为,,
    ,①
    ,②
    ①②得,

    .
    2.(新课标Ⅲ)设数列{an}满足a1=3,.
    (1)计算a2,a3,猜想{an}的通项公式并加以证明;
    (2)求数列{2nan}的前n项和Sn.
    【答案】(1),,,证明见解析;(2).
    【解析】
    (1)由题意可得,,
    由数列的前三项可猜想数列是以为首项,2为公差的等差数列,即,
    证明如下:
    当时,成立;
    假设时,成立.
    那么时,也成立.
    则对任意的,都有成立;
    (2)由(1)可知,
    ,①
    ,②
    由①②得:

    即.
    3.(北京卷)已知是无穷数列.给出两个性质:
    ①对于中任意两项,在中都存在一项,使;
    ②对于中任意项,在中都存在两项.使得.
    (Ⅰ)若,判断数列是否满足性质①,说明理由;
    (Ⅱ)若,判断数列是否同时满足性质①和性质②,说明理由;
    (Ⅲ)若是递增数列,且同时满足性质①和性质②,证明:为等比数列.
    【答案】(Ⅰ)详见解析;(Ⅱ)详解解析;(Ⅲ)证明详见解析.
    【解析】
    (Ⅰ)不具有性质①;
    (Ⅱ)具有性质①;
    具有性质②;
    (Ⅲ)【解法一】
    首先,证明数列中的项数同号,不妨设恒为正数:
    显然,假设数列中存在负项,设,
    第一种情况:若,即,
    由①可知:存在,满足,存在,满足,
    由可知,从而,与数列的单调性矛盾,假设不成立.
    第二种情况:若,由①知存在实数,满足,由的定义可知:,
    另一方面,,由数列的单调性可知:,
    这与的定义矛盾,假设不成立.
    同理可证得数列中的项数恒为负数.
    综上可得,数列中的项数同号.
    其次,证明:
    利用性质②:取,此时,
    由数列的单调性可知,
    而,故,
    此时必有,即,
    最后,用数学归纳法证明数列为等比数列:
    假设数列的前项成等比数列,不妨设,
    其中,(的情况类似)
    由①可得:存在整数,满足,且 (*)
    由②得:存在,满足:,由数列的单调性可知:,
    由可得: (**)
    由(**)和(*)式可得:,
    结合数列的单调性有:,
    注意到均为整数,故,
    代入(**)式,从而.
    总上可得,数列的通项公式为:.
    即数列为等比数列.
    【解法二】假设数列中的项数均为正数:
    首先利用性质②:取,此时,
    由数列的单调性可知,
    而,故,
    此时必有,即,
    即成等比数列,不妨设,
    然后利用性质①:取,则,
    即数列中必然存在一项的值为,下面我们来证明,
    否则,由数列的单调性可知,
    在性质②中,取,则,从而,
    与前面类似的可知则存在,满足,
    若,则:,与假设矛盾;
    若,则:,与假设矛盾;
    若,则:,与数列的单调性矛盾;
    即不存在满足题意的正整数,可见不成立,从而,
    同理可得:,从而数列为等比数列,
    同理,当数列中的项数均为负数时亦可证得数列为等比数列.
    由推理过程易知数列中的项要么恒正要么恒负,不会同时出现正数和负数.
    从而题中的结论得证,数列为等比数列.
    4.(江苏卷)已知数列的首项a1=1,前n项和为Sn.设λ与k是常数,若对一切正整数n,均有成立,则称此数列为“λ–k”数列.
    (1)若等差数列是“λ–1”数列,求λ的值;
    (2)若数列是“”数列,且an>0,求数列的通项公式;
    (3)对于给定的λ,是否存在三个不同的数列为“λ–3”数列,且an≥0?若存在,求λ的取值范围;若不存在,说明理由,
    【答案】(1)1
    (2)
    (3)
    【解析】
    (1)
    (2)






    (3)假设存在三个不同的数列为数列.



    ∵对于给定的,存在三个不同的数列为数列,且
    或有两个不等的正根.
    可转化为,不妨设,则有两个不等正根,设.
    ① 当时,,即,此时,,满足题意.
    ② 当时,,即,此时,,此情况有两个不等负根,不满足题意舍去.
    综上,
    5.(山东卷)已知公比大于的等比数列满足.
    (1)求的通项公式;
    (2)求.
    【答案】(1);(2)
    【解析】
    (1) 设等比数列的公比为q(q>1),则,
    整理可得:,

    数列的通项公式为:.
    (2)由于:,故:


    .
    6.(天津卷)已知为等差数列,为等比数列,.
    (Ⅰ)求和的通项公式;
    (Ⅱ)记的前项和为,求证:;
    (Ⅲ)对任意的正整数,设求数列的前项和.
    【答案】(Ⅰ),;(Ⅱ)证明见解析;(Ⅲ).
    【解析】
    (Ⅰ)设等差数列的公差为,等比数列的公比为q.
    由,,可得d=1.
    从而的通项公式为.
    由,
    又q≠0,可得,解得q=2,
    从而的通项公式为.
    (Ⅱ)证明:由(Ⅰ)可得,
    故,,
    从而,
    所以.
    (Ⅲ)当n奇数时,,
    当n为偶数时,,
    对任意的正整数n,有,
    和 ①
    由①得 ②
    由①②得,
    由于,
    从而得:.
    因此,.
    所以,数列的前2n项和为.
    7.(浙江卷)已知数列{an},{bn},{cn}中,.
    (Ⅰ)若数列{bn}为等比数列,且公比,且,求q与an的通项公式;
    (Ⅱ)若数列{bn}为等差数列,且公差,证明:.
    【答案】(I);(II)证明见解析.
    【解析】
    (I)依题意,而,即,由于,所以解得,所以.
    所以,故,所以数列是首项为,公比为的等比数列,所以.
    所以().
    所以
    (II)依题意设,由于,
    所以,

    .
    所以
    .
    由于,所以,所以.
    即,.

    1.【高考全国II卷理数】已知数列{an}和{bn}满足a1=1,b1=0,,.
    (I)证明:{an+bn}是等比数列,{an–bn}是等差数列;
    (II)求{an}和{bn}的通项公式.
    【答案】(I)见解析;(2),.
    【解析】(1)由题设得,即.
    又因为a1+b1=l,所以是首项为1,公比为的等比数列.
    由题设得,即.
    又因为a1–b1=l,所以是首项为1,公差为2的等差数列.
    (2)由(1)知,,.
    所以,

    2.【高考北京卷理数】已知数列{an},从中选取第i1项、第i2项、…、第im项(i1

    相关试卷

    2011-2020年高考数学真题分专题训练 专题19 数列的求和问题(含解析):

    这是一份2011-2020年高考数学真题分专题训练 专题19 数列的求和问题(含解析),共39页。

    高考数学真题专题训练 08数列(含解析):

    这是一份高考数学真题专题训练 08数列(含解析),共15页。试卷主要包含了 80 等内容,欢迎下载使用。

    高考数学真题专题训练 16概率与统计综合(含解析):

    这是一份高考数学真题专题训练 16概率与统计综合(含解析),共35页。试卷主要包含了01);,,得下表,5×9=256,25等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map