- 专题02 力与直线运动 【练】(解析版) 试卷 0 次下载
- 专题02 力与直线运动 【练】(原卷版) 试卷 0 次下载
- 专题03 力和曲线运动 【讲】(原卷版) 试卷 0 次下载
- 专题03 力和曲线运动 【练】(解析版) 试卷 0 次下载
- 专题03 力和曲线运动 【练】(原卷版) 试卷 0 次下载
专题03 力和曲线运动 【讲】(解析版)
展开专题03 力与曲线运动
【要点提炼】
1.物体运动状态的判断
2.平抛运动与类平抛运动
(1)处理方法:正交分解法或利用功能关系。
(2)运动性质:匀变速曲线运动;沿初速度方向为匀速直线运动,沿合外力方向为初速度为零的匀加速直线运动。
3.圆周运动
(1)匀速圆周运动为变加速曲线运动,处理圆周运动问题的关键是确定半径和圆心。
当带电粒子速度与匀强磁场方向垂直时,带电粒子做匀速圆周运动,qvB=m,T=。
(2)天体的运动一般可近似为匀速圆周运动。中心天体对环绕天体的万有引力提供环绕天体做匀速圆周运动的向心力,即满足G=ma=m=mω2r=mr。
(3)竖直平面内的圆周运动
①轻绳模型
物体做完整圆周运动的临界特点:在最高点mg=。
②轻杆模型
受力特点:在最高点,杆的弹力的大小和方向与物体的速度有关,可能竖直向下,也可能竖直向上;
物体做完整圆周运动的临界特点:在最高点v=0。
③带电体在重力场和匀强电场叠加的空间中做圆周运动时,可按等效重力场分析,找出等效最高点和等效最低点,用类似只有重力作用时竖直平面内圆周运动问题的解决方法处理。
【高考考向1 平抛运动模型】
命题角度1 平抛运动基本规律的综合应用
例1:(2022·广东·高考真题)如图所示,在竖直平面内,截面为三角形的小积木悬挂在离地足够高处,一玩具枪的枪口与小积木上P点等高且相距为L。当玩具子弹以水平速度v从枪口向P点射出时,小积木恰好由静止释放,子弹从射出至击中积木所用时间为t。不计空气阻力。下列关于子弹的说法正确的是( )
A.将击中P点,t大于 B.将击中P点,t等于
C.将击中P点上方,t大于 D.将击中P点下方,t等于
【答案】B
【详解】由题意知枪口与P点等高,子弹和小积木在竖直方向上做自由落体运动,当子弹击中积木时子弹和积木运动时间相同,根据
可知下落高度相同,所以将击中P点;又由于初始状态子弹到P点的水平距离为L,子弹在水平方向上做匀速直线运动,故有
故选B。
(1)平抛运动的时间完全由高度决定,t=,水平射程x=v0t=v0。
(2)落地速度v==,以θ表示落地时速度与水平方向间的夹角,有tan θ==。
(3)速度改变量:做平抛运动的物体在任意相等时间间隔Δt内的速度改变量Δv=gΔt相同,方向恒为竖直向下。
(4)平抛运动的推论
①任意时刻速度的反向延长线一定通过此时水平位移的中点。
②设在任意时刻瞬时速度与水平方向的夹角为θ,位移与水平方向的夹角为φ,则有tan θ=2tan φ。
(5)求解平抛运动问题的技巧
①把运动分解为相互垂直方向上的匀速直线运动和匀加速直线运动,通过研究分运动达到研究合运动的目的。
②确定速度或位移与题目所给的角度之间的联系,这往往是解决问题的突破口。
1-1.(2022·广东·高考真题)图是滑雪道的示意图。可视为质点的运动员从斜坡上的M点由静止自由滑下,经过水平NP段后飞入空中,在Q点落地。不计运动员经过N点的机械能损失,不计摩擦力和空气阻力。下列能表示该过程运动员速度大小v或加速度大小a随时间t变化的图像是( )
A. B.
C. D.
【答案】C
【详解】设斜坡倾角为,运动员在斜坡MN段做匀加速直线运动,根据牛顿第二定律
可得
运动员在水平段做匀速直线运动,加速度
运动员从点飞出后做平抛运动,加速度为重力加速度
设在点的速度为,则从点飞出后速度大小的表达式为
由分析可知从点飞出后速度大小与时间的图像不可能为直线,且
C正确,ABD错误。
故选C。
2-2.(2022·河北·高考真题)如图,广场水平地面上同种盆栽紧密排列在以为圆心、和为半径的同心圆上,圆心处装有竖直细水管,其上端水平喷水嘴的高度、出水速度及转动的角速度均可调节,以保障喷出的水全部落入相应的花盆中。依次给内圈和外圈上的盆栽浇水时,喷水嘴的高度、出水速度及转动的角速度分别用、、和、、表示。花盆大小相同,半径远小于同心圆半径,出水口截面积保持不变,忽略喷水嘴水平长度和空气阻力。下列说法正确的是( )
A.若,则
B.若,则
C.若,,喷水嘴各转动一周,则落入每个花盆的水量相同
D.若,喷水嘴各转动一周且落入每个花盆的水量相同,则
【答案】BD
【详解】AB.根据平抛运动的规律
解得
可知若h1=h2,则
v1:v2 =R1:R2
若v1=v2,则
选项A错误,B正确;
C.若,则喷水嘴各转动一周的时间相同,因v1=v2,出水口的截面积相同,可知单位时间喷出水的质量相同,喷水嘴转动一周喷出的水量相同,但因内圈上的花盆总数量较小,可知得到的水量较多,选项C错误;
D.设出水口横截面积为S0,喷水速度为v,若,则喷水管转动一周的时间相等,因h相等,则水落地的时间相等,则
相等;在圆周上单位时间内单位长度的水量为
相等,即一周中每个花盆中的水量相同,选项D正确。
故选BD。
命题角度2 带电粒子在匀强电场中的类平抛运动
例2:(2022·湖北·模拟预测)如图甲所示,粒子源内有大量质量为m、电荷量为的带电粒子逸出(可以认为初速度为零),经电压为的匀强电场加速后,沿平行板M,N间的中线进入偏转电场,板长为l,极板右侧有垂直于纸面向里的匀强磁场,磁场区域足够大。若在M,N两板间加电压,其电势差随时间t的变化规律如图乙所示(U为已知),所有粒子均能从极板右侧射出,并进入匀强磁场区域。已知粒子通过偏转电场所用时间远小于T,且在该过程中电场可视为恒定,不计粒子间的相互作用及粒子所受的重力,求
(1)M、N两极板的最小间距:
(2)若两极板间距为上问所求值,粒子经磁场偏转后,均无法从极板右侧回到极板间,则匀强磁场磁感应强度的大小应满足什么条件?
【答案】(1);(2)
【详解】(1)根据题意可知,设粒子进入偏转电场时的速度,经过加速电场时,由动能定理有
进入偏转电场后,当偏转电压为时,偏转的位移最大,此时,水平方向上有
竖直方向上,由牛顿第二定律有
由运动学公式可得,偏转位移为
联立解得
所有粒子均能从极板右侧射出,则有
解得
即M、N两极板的最小间距为。
(2)根据题意,画出粒子的运动轨迹,如图所示
由运动学公式可知,粒子竖直方向的速度为
则粒子进入磁场的速度为
设速度方向与竖直方向的夹角为,则有
粒子进入磁场后,由牛顿第二定律由
可得
若满足两极板间距,粒子经磁场偏转后,均无法从极板右侧回到极板间,由图根据几何关系有
联立代入数据解得
(1)研究对象的重力是否忽略
①除有明确说明或暗示外,微观粒子(比如:α粒子、质子、电子等)的重力不计;
②除有明确说明或暗示外,带电小球、液滴等宏观物体的重力不能忽略。
(2)带电粒子的重力不计,初速度与匀强电场垂直时,一定做类平抛运动,沿初速度方向做匀速直线运动,沿电场力方向做初速度为零的匀加速直线运动,类平抛运动的规律及结论同平抛运动类似。
2-1.(2022·浙江·高考真题)如图所示,带等量异种电荷的两正对平行金属板M、N间存在匀强电场,板长为L(不考虑边界效应)。t=0时刻,M板中点处的粒子源发射两个速度大小为v0的相同粒子,垂直M板向右的粒子,到达N板时速度大小为;平行M板向下的粒子,刚好从N板下端射出。不计重力和粒子间的相互作用,则( )
A.M板电势高于N板电势
B.两个粒子的电势能都增加
C.粒子在两板间的加速度
D.粒子从N板下端射出的时间
【答案】C
【详解】A.由于不知道两粒子的电性,故不能确定M板和N板的电势高低,故A错误;
B.根据题意垂直M板向右的粒子,到达N板时速度增加,动能增加,则电场力做正功,电势能减小;则平行M板向下的粒子到达N板时电场力也做正功,电势能同样减小,故B错误;
CD.设两板间距离为d,对于平行M板向下的粒子刚好从N板下端射出,在两板间做类平抛运动,有
对于垂直M板向右的粒子,在板间做匀加速直线运动,因两粒子相同,在电场中加速度相同,有
联立解得
,
故C正确,D错误;
故选C。
2-2.(2022·湖北·高考真题)如图所示,一带电粒子以初速度v0沿x轴正方向从坐标原点О射入,并经过点P(a>0,b>0)。若上述过程仅由方向平行于y轴的匀强电场实现,粒子从О到Р运动的时间为t1,到达Р点的动能为Ek1。若上述过程仅由方向垂直于纸面的匀强磁场实现,粒子从O到Р运动的时间为t2,到达Р点的动能为Ek2。下列关系式正确的是·( )
A.t1<t2 B.t1> t2
C.Ek1<Ek2 D.Ek1>Ek2
【答案】AD
【详解】AB.该过程中由方向平行于y轴的匀强电场实现,此时粒子做类平抛运动,沿x轴正方向做匀速直线运动;当该过程仅由方向垂直于纸面的匀强磁场实现时,此时粒子做匀速圆周运动,沿x轴正方向分速度在减小,根据
可知
t1<t2
故A正确,B错误。
CD.该过程中由方向平行于y轴的匀强电场实现,此时粒子做类平抛运动,到达P点时速度大于v0;当该过程仅由方向垂直于纸面的匀强磁场实现时,此时粒子做匀速圆周运动,到达P点时速度等于v0,而根据
可知
Ek1>Ek2
故C错误,D正确。
故选AD。
【高考考向2 圆周运动模型】
命题角度1 圆周运动基本规律的综合应用
例3. (2022·辽宁·高考真题)2022年北京冬奥会短道速滑混合团体2000米接力决赛中,我国短道速滑队夺得中国队在本届冬奥会的首金。
(1)如果把运动员起跑后进入弯道前的过程看作初速度为零的匀加速直线运动,若运动员加速到速度时,滑过的距离,求加速度的大小;
(2)如果把运动员在弯道滑行的过程看作轨道为半圆的匀速圆周运动,如图所示,若甲、乙两名运动员同时进入弯道,滑行半径分别为,滑行速率分别为,求甲、乙过弯道时的向心加速度大小之比,并通过计算判断哪位运动员先出弯道。
【答案】(1);(2),甲
【详解】(1)根据速度位移公式有
代入数据可得
(2)根据向心加速度的表达式
可得甲、乙的向心加速度之比为
甲、乙两物体做匀速圆周运动,则运动的时间为
代入数据可得甲、乙运动的时间为
,
因,所以甲先出弯道。
(1)题目若涉及竖直平面内的圆周运动过程中的两个状态,可以用动能定理进行关联列方程。
(2)竖直平面内的圆周运动有两种模型:轻绳模型和轻杆模型。对于轻绳模型,物体运动到最高点的最小速度为;对于轻杆模型,物体运动到最高点的最小速度为0,受拉力或支持力的临界速度为。在机械能守恒的情况下,两模型最低点与最高点的拉力差为6mg(轻杆模型中,若在最高点为支持力,则最低点的拉力与最高点支持力的和为6mg)。
(3)在重力场与电场叠加的等效重力场中做圆周运动的物体,所受重力与电场力的合力沿圆周上的点的切线方向的分力为0的位置有两个,分别是等效最高点和等效最低点,该两点关于圆心对称,物体在等效最高点的速度最小,所受拉力最小(轻杆模型中,若物体在等效最高点所受力为支持力,则物体在该点所受支持力最大),在等效最低点的速度最大,所受拉力最大。
3-1.(2022·北京·高考真题)我国航天员在“天宫课堂”中演示了多种有趣的实验,提高了青少年科学探索的兴趣。某同学设计了如下实验:细绳一端固定,另一端系一小球,给小球一初速度使其在竖直平面内做圆周运动。无论在“天宫”还是在地面做此实验( )
A.小球的速度大小均发生变化 B.小球的向心加速度大小均发生变化
C.细绳的拉力对小球均不做功 D.细绳的拉力大小均发生变化
【答案】C
【详解】AC.在地面上做此实验,忽略空气阻力,小球受到重力和绳子拉力的作用,拉力始终和小球的速度垂直,不做功,重力会改变小球速度的大小;在“天宫”上,小球处于完全失重的状态,小球仅在绳子拉力作用下做匀速圆周运动,绳子拉力仍然不做功,A错误,C正确;
BD.在地面上小球运动的速度大小改变,根据和(重力不变)可知小球的向心加速度和拉力的大小发生改变,在“天宫”上小球的向心加速度和拉力的大小不发生改变,BD错误。
故选C。
命题角度2 万有引力与航天
例4. (2022·河北·高考真题)2008年,我国天文学家利用国家天文台兴隆观测基地的2.16米望远镜,发现了一颗绕恒星HD173416运动的系外行星HD173416b,2019年,该恒星和行星被国际天文学联合会分别命名为“羲和”和“和“望舒”,天文观测得到恒星羲和的质量是太阳质量的2倍,若将望舒与地球的公转均视为匀速圆周运动,且公转的轨道半径相等。则望舒与地球公转速度大小的比值为( )
A. B.2 C. D.
【答案】C
【详解】地球绕太阳公转和行星望舒绕恒星羲和的匀速圆周运动都是由万有引力提供向心力,有
解得公转的线速度大小为
其中中心天体的质量之比为2:1,公转的轨道半径相等,则望舒与地球公转速度大小的比值为,故选C。
1.解决天体运动问题的两条常用思路
(1)将天体的运动看做匀速圆周运动,中心天体对它的万有引力提供运动所需要的向心力,即G=ma=m=mω2r=mr。
(2)充分利用物体所受重力和万有引力的关系:不考虑中心天体自转时,中心天体对其表面附近的物体的万有引力等于物体所受的重力,即=mg或GM=gR2(R、g和M分别是中心天体的半径、表面重力加速度和质量)。公式GM=gR2应用广泛,被称为“黄金代换式”。
2.卫(行)星做椭圆运动时常用的两条规律
(1)开普勒第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。
(2)开普勒第三定律(周期定律):所有行星的轨道半长轴的三次方跟它的公转周期的二次方的比值都相等,即=k。
3.卫星变轨问题应注意的四点
(1)若卫星由高轨道变轨到低轨道,即轨道半径(半长轴)减小时,需要在高轨道变轨处减速;反之,若卫星由低轨道变轨到高轨道,即轨道半径(半长轴)增大时,需要在低轨道变轨处加速。
(2)卫星变轨时速度的变化情况,可根据轨道半径(半长轴)的变化情况判断;稳定的新轨道上运行速度的变化情况可由开普勒第二定律判断。
(3)同一卫星在不同轨道上运行时机械能不同,轨道半径(半长轴)越大,机械能越大。
(4)卫星经过不同轨道相交的同一点时加速度相等。
4-1.(2022·浙江·高考真题)“天问一号”从地球发射后,在如图甲所示的P点沿地火转移轨道到Q点,再依次进入如图乙所示的调相轨道和停泊轨道,则天问一号( )
A.发射速度介于7.9km/s与11.2km/s之间
B.从P点转移到Q点的时间小于6个月
C.在环绕火星的停泊轨道运行的周期比在调相轨道上小
D.在地火转移轨道运动时的速度均大于地球绕太阳的速度
【答案】C
【详解】A.因发射的卫星要能变轨到绕太阳转动,则发射速度要大于第二宇宙速度,即发射速度介于11.2km/s与16.7km/s之间,故A错误;
B.因P点转移到Q点的转移轨道的半长轴大于地球公转轨道半径,则其周期大于地球公转周期(1年共12个月),则从P点转移到Q点的时间为轨道周期的一半时间应大于6个月,故B错误;
C.因在环绕火星的停泊轨道的半长轴小于调相轨道的半长轴,则由开普勒第三定律可知在环绕火星的停泊轨道运行的周期比在调相轨道上小,故C正确;
D.卫星从Q点变轨时,要加速增大速度,即在地火转移轨道Q点的速度小于火星轨道的速度,而由
可得
可知火星轨道速度小于地球轨道速度,因此可知卫星在Q点速度小于地球轨道速度,故D错误;
故选C。
4-2(2022·辽宁·高考真题)如图所示,行星绕太阳的公转可以看成匀速圆周运动。在地图上容易测得地球—水星连线与地球—太阳连线夹角,地球—金星连线与地球—太阳连线夹角,两角最大值分别为、。则( )
A.水星的公转周期比金星的大
B.水星的公转向心加速度比金星的大
C.水星与金星的公转轨道半径之比为
D.水星与金星的公转线速度之比为
【答案】BC
【详解】AB.根据万有引力提供向心力有
可得
因为水星的公转半径比金星小,故可知水星的公转周期比金星小;水星的公转向心加速度比金星的大,故A错误,B正确;
C.设水星的公转半径为,地球的公转半径为,当α角最大时有
同理可知有
所以水星与金星的公转半径之比为
故C正确;
D.根据
可得
结合前面的分析可得
故D错误;
故选BC。
4-3.(2022·重庆·高考真题)我国载人航天事业已迈入“空间站时代”。若中国空间站绕地球近似做匀速圆周运动,运行周期为T,轨道半径约为地球半径的倍,已知地球半径为R,引力常量为G,忽略地球自转的影响,则( )
A.漂浮在空间站中的宇航员不受地球的引力
B.空间站绕地球运动的线速度大小约为
C.地球的平均密度约为
D.空间站绕地球运动的向心加速度大小约为地面重力加速度的倍
【答案】BD
【详解】A.漂浮在空间站中的宇航员依然受地球的引力,所受引力提供向心力做匀速圆周运动而处于完全失重,视重为零,故A错误;
B.根据匀速圆周运动的规律,可知空间站绕地球运动的线速度大小约为
故B正确;
C.设空间站的质量为,其所受万有引力提供向心力,有
则地球的平均密度约为
故C错误;
D.根据万有引力提供向心力,有
则空间站绕地球运动的向心加速度大小为
地表的重力加速度为
可得
即空间站绕地球运动的向心加速度大小约为地面重力加速度的倍,故D正确。
故选BD。
命题角度3 带电粒子在匀强磁场中的圆周运动
例5.(2022·辽宁·高考真题)粒子物理研究中使用的一种球状探测装置横截面的简化模型如图所示。内圆区域有垂直纸面向里的匀强磁场,外圆是探测器。两个粒子先后从P点沿径向射入磁场,粒子1沿直线通过磁场区域后打在探测器上的M点。粒子2经磁场偏转后打在探测器上的N点。装置内部为真空状态,忽略粒子重力及粒子间相互作用力。下列说法正确的是( )
A.粒子1可能为中子
B.粒子2可能为电子
C.若增大磁感应强度,粒子1可能打在探测器上的Q点
D.若增大粒子入射速度,粒子2可能打在探测器上的Q点
【答案】AD
【详解】AB.由题图可看出粒子1没有偏转,说明粒子1不带电,则粒子1可能为中子;粒子2向上偏转,根据左手定则可知粒子2应该带正电,A正确、B错误;
C.由以上分析可知粒子1为中子,则无论如何增大磁感应强度,粒子1都不会偏转,C错误;
D.粒子2在磁场中洛伦兹力提供向心力有
解得
可知若增大粒子入射速度,则粒子2的半径增大,粒子2可能打在探测器上的Q点,D正确。
故选AD。
(1)解决带电粒子在匀强磁场中的圆周运动问题首先要确定粒子运动的圆心、半径,依据是:
①半径与速度垂直;
②半径与弦的垂直平分线垂直;
③两半径交点就是圆心。
(2)解决带电粒子在匀强磁场中的圆周运动问题的关键是几何分析,明确临界状态,用好两表达式r=,T=。
5-1.(2022·全国·高考真题)一种可用于卫星上的带电粒子探测装置,由两个同轴的半圆柱形带电导体极板(半径分别为R和)和探测器组成,其横截面如图(a)所示,点O为圆心。在截面内,极板间各点的电场强度大小与其到O点的距离成反比,方向指向O点。4个带正电的同种粒子从极板间通过,到达探测器。不计重力。粒子1、2做圆周运动,圆的圆心为O、半径分别为、;粒子3从距O点的位置入射并从距O点的位置出射;粒子4从距O点的位置入射并从距O点的位置出射,轨迹如图(b)中虚线所示。则( )
A.粒子3入射时的动能比它出射时的大
B.粒子4入射时的动能比它出射时的大
C.粒子1入射时的动能小于粒子2入射时的动能
D.粒子1入射时的动能大于粒子3入射时的动能
【答案】BD
【详解】C.在截面内,极板间各点的电场强度大小与其到O点的距离成反比,可设为
带正电的同种粒子1、2在均匀辐向电场中做匀速圆周运动,则有
,
可得
即粒子1入射时的动能等于粒子2入射时的动能,故C错误;
A.粒子3从距O点的位置入射并从距O点的位置出射,做向心运动,电场力做正功,则动能增大,粒子3入射时的动能比它出射时的小,故A错误;
B.粒子4从距O点的位置入射并从距O点的位置出射,做离心运动,电场力做负功,则动能减小,粒子4入射时的动能比它出射时的大,故B正确;
D.粒子3做向心运动,有
可得
粒子1入射时的动能大于粒子3入射时的动能,故D正确;
故选BD。
5-2.(2022·湖北·高考真题)在如图所示的平面内,分界线SP将宽度为L的矩形区域分成两部分,一部分充满方向垂直于纸面向外的匀强磁场,另一部分充满方向垂直于纸面向里的匀强磁场,磁感应强度大小均为B,SP与磁场左右边界垂直。离子源从S处射入速度大小不同的正离子,离子入射方向与磁场方向垂直且与SP成30°角。已知离子比荷为k,不计重力。若离子从Р点射出,设出射方向与入射方向的夹角为θ,则离子的入射速度和对应θ角的可能组合为( )
A.kBL,0° B.kBL,0° C.kBL,60° D.2kBL,60°
【答案】BC
【详解】若粒子通过下部分磁场直接到达P点,如图
根据几何关系则有
可得
根据对称性可知出射速度与SP成30°角向上,故出射方向与入射方向的夹角为θ=60°。
当粒子上下均经历一次时,如图
因为上下磁感应强度均为B,则根据对称性有
根据洛伦兹力提供向心力有
可得
此时出射方向与入射方向相同,即出射方向与入射方向的夹角为θ=0°。
通过以上分析可知当粒子从下部分磁场射出时,需满足
(n=1,2,3……)
此时出射方向与入射方向的夹角为θ=60°;
当粒子从上部分磁场射出时,需满足
(n=1,2,3……)
此时出射方向与入射方向的夹角为θ=0°。
故可知BC正确,AD错误。
故选BC。
专题03 力和曲线运动 【练】(原卷版): 这是一份专题03 力和曲线运动 【练】(原卷版),共8页。试卷主要包含了单选题,多选题,解答题等内容,欢迎下载使用。
专题03 力和曲线运动 【练】(解析版): 这是一份专题03 力和曲线运动 【练】(解析版),共20页。试卷主要包含了单选题,多选题,解答题等内容,欢迎下载使用。
专题03 力和曲线运动 【讲】(原卷版): 这是一份专题03 力和曲线运动 【讲】(原卷版),共14页。