(2020-2022)中考数学真题分类汇编专题21 与二次函数有关的压轴题(教师版)
展开
这是一份(2020-2022)中考数学真题分类汇编专题21 与二次函数有关的压轴题(教师版),共148页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
专题21 与二次函数有关的压轴题
一、单选题
1.(2022·四川凉山)已知抛物线y=ax2+bx+c(a0)经过点(1,0)和点(0,-3),且对称轴在y轴的左侧,则下列结论错误的是( )
A.a>0
B.a+b=3
C.抛物线经过点(-1,0)
D.关于x的一元二次方程ax2+bx+c=-1有两个不相等的实数根
【答案】C
【分析】
根据抛物线的图像与性质,根据各个选项的描述逐项判定即可得出结论.
【详解】
解:A、根据抛物线y=ax2+bx+c(a0)经过点(1,0)和点(0,-3),且对称轴在y轴的左侧可知,该说法正确,故该选项不符合题意;
B、由抛物线y=ax2+bx+c(a0)经过点(1,0)和点(0,-3)可知,解得,该说法正确,故该选项不符合题意;
C、由抛物线y=ax2+bx+c(a0)经过点(1,0),对称轴在y轴的左侧,则抛物线不经过(-1,0),该说法错误,故该选项符合题意;
D、关于x的一元二次方程ax2+bx+c=-1根的情况,可以转化为抛物线y=ax2+bx+c(a≤0)与直线的交点情况,根据抛物线y=ax2+bx+c(a0)经过点(1,0)和点(0,-3),,结合抛物线开口向上,且对称轴在y轴的左侧可知抛物线y=ax2+bx+c(a≤0)与直线的有两个不同的交点,该说法正确,故该选项不符合题意;
故选:C.
【点睛】
本题考查二次函数的图像与性质,涉及到开口方向的判定、二次函数系数之间的关系、方程的根与函数图像交点的关系等知识点,根据题中条件得到抛物线草图是解决问题的关键.
2.(2022·四川成都)如图,二次函数的图像与轴相交于,两点,对称轴是直线,下列说法正确的是( )
A. B.当时,的值随值的增大而增大
C.点的坐标为 D.
【答案】D
【分析】
结合二次函数图像与性质,根据条件与图像,逐项判定即可.
【详解】
解:A、根据图像可知抛物线开口向下,即,故该选项不符合题意;
B、根据图像开口向下,对称轴为,当,随的增大而减小;当,随的增大而增大,故当时,随的增大而增大;当,随的增大而减小,故该选项不符合题意;
C、根据二次函数的图像与轴相交于,两点,对称轴是直线,可得对称轴,解得,即,故该选项不符合题意;
D、根据可知,当时,,故该选项符合题意;
故选:D.
【点睛】
本题考查二次函数的图像与性质,根据图像得到抛物线开口向下,根据对称轴以及抛物线与轴交点得到是解决问题的关键.
3.(2021·山东济南)新定义:在平面直角坐标系中,对于点和点,若满足时,;时,,则称点是点的限变点.例如:点的限变点是,点的限变点是.若点在二次函数的图象上,则当时,其限变点的纵坐标的取值范围是( )
A. B.
C. D.
【答案】D
【分析】
根据题意,当时,的图象向下平移4个单位,当时,,的图象关于轴对称,据此即可求得其限变点的纵坐标的取值范围,作出函数图像,直观的观察可得到的取值范围
【详解】
点在二次函数的图象上,则当时,其限变点的图像即为图中虚线部分,如图,
当时,的图象向下平移4个单位,当时,的图象关于轴对称,
从图可知函数的最大值是当时,取得最大值3,
最小值是当时,取得最小值,
.
故选D.
【点睛】
本题考查了新定义,二次函数的最值问题,分段讨论函数的最值,可以通过函数图像辅助求解,理解新定义,画出函数图像是解题的关键.
4.(2021·辽宁盘锦)如图,四边形ABCD是菱形,BC=2,∠ABC=60°,对角线AC与BD相交于点O,线段BD沿射线AD方向平移,平移后的线段记为PQ,射线PQ与射线AC交于点M,连结PC,设OM长为,△PMC面积为.下列图象能正确反映出与的函数关系的是( )
A. B. C. D.
【答案】D
【分析】
由四边形ABCD是菱形,BC=2,∠ABC=60°,可求出AC、AO、OC的长,再设OM=x,利用解直角三角形表示出PM,分点M在线段OC上(不含点O)时和当点在线段OC延长线上时两种情况分别表示出y再结合函数图象即可判断出正确答案.
【详解】
解:∵四边形ABCD是菱形,
∴AD=BC=2,∠BAD=180°−∠ABC=120°,
∴∠DAO=∠BAD=60°,
∴△DAC是等边三角形,
∴AD=AC=2,
∴AO=CO=AC=1,
设OM=x,
∵AC⊥BD,PQ为BD平移而来,
∴∠AOD=∠AMP=90°,
∴△AMP为直角三角形,
∴PM=AM•tan∠PAM=(1+x),
①当点M在线段OC上(不含点O)时,
即0≤x<1,此时CM=1−x,
则y=(1−x)×(1+x)=−,
∴0≤x<1,函数图象开口应朝下,
故B、C不符合题意,
②当点在线段OC延长线上时,即x>1,如图所示:
此时C=x−1,
则y=(x−1)×(x+1)=,
∴只有D选项符合题意,
故选:D.
【点睛】
本题考查了菱形的性质,三角形面积,解直角三角形,二次函数图象等知识,熟练掌握上述知识并能分点M在线段OC上(不含点O)时和当点在线段OC延长线上时两种情况分别表示出y再结合函数图象进行判断是解题的关键.
5.(2021·四川雅安)定义:,若函数,则该函数的最大值为( )
A.0 B.2 C.3 D.4
【答案】C
【分析】
根据题目中所给的运算法则,分两种情况进行求解即可.
【详解】
令,
当时,即时,,
令 ,则w与x轴的交点坐标为(2,0),(-1,0),
∴当时,,
∴(),
∵y随x的增大而增大,
∴当x=2时,;
当时,即时,,
令 ,则w与x轴的交点坐标为(2,0),(-1,0),
∴当时,或,
∴(或),
∵的对称轴为x=1,
∴当时,y随x的增大而减小,
∵当x=2时,=3,
∴当时,yd;当a>0时,e=f< cd;
当a>0时,画出草图如图:
∴e=f< c
相关试卷
这是一份三年(2020年-2022年)中考数学真题分项汇编:专题21 与二次函数有关的压轴题(含答案详解),共151页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份(2020-2022)中考数学真题分类汇编专题25 与图形的相似有关的压轴题(教师版),共118页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份(2020-2022)中考数学真题分类汇编专题23 与四边形有关的压轴题(教师版),共152页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。