所属成套资源:各地区2023年高考化学模拟题汇编
山东省2023年高考化学模拟题汇编-09化学反应的热效应
展开
这是一份山东省2023年高考化学模拟题汇编-09化学反应的热效应,共42页。试卷主要包含了单选题,多选题,原理综合题等内容,欢迎下载使用。
山东省2023年高考化学模拟题汇编-09化学反应的热效应
一、单选题
1.(2023·山东潍坊·统考模拟预测)下列实验装置或操作正确的是
A.用图1装置测定中和反应的反应热
B.用图2装置测定化学反应速率
C.用图3装置分离乙醚和苯
D.用图4装置振荡萃取、静置分层后,打开分液漏斗上方的玻璃塞再进行分液
2.(2023·山东日照·统考一模)CO2电催化还原制备CH3OH的反应历程如图所示(部分物质未画出)。
主反应:
副反应:
下列说法正确的是
A.催化剂可同时降低主、副反应的活化能,从而降低、
B.*与结合形成*
C.反应过程中有极性键和非极性键的断裂与生成
D.反应为决速步
3.(2023·山东济宁·统考一模)利用下列装置进行实验,能达到实验目的的是
A.图Ⅰ装置可制备固体
B.图Ⅱ装置可测定中和反应的反应热
C.图Ⅲ装置可实现铁上镀铜,a极为铜,电解质溶液可以是溶液
D.图Ⅳ装置可检验1-溴丁烷和氢氧化钠乙醇溶液反应的产物
4.(2023·山东菏泽·校考一模)活泼自由基与氧气反应一直是研究人员关注的焦点。理论研究表明,HNO自由基与O2反应历程的能量变化如图所示。下列说法错误的是
A.产物P2比P1稳定
B.该反应为放热反应
C.相同条件下,由中间产物Z转化为不同产物的速率:v(P1)”、“”“”“”“v(P2),C项错误;
D.由图得,中间产物Z到过渡态Ⅳ所需要的活化能最大,则该历程中最大正反应活化能E正=(-18.92kJ/mol)-(-205.11kJ/mol)=186.19kJ/mol,D项正确;
故答案为C。
5.BD
【详解】A.由图可知,使用催化剂时的活化能小于使用催化剂时的活化能,则催化效果:催化剂高于催化剂,故A正确;
B.由图可知,催化时,1分子比1分子能量低,则生成1mol放热为,故,故B错误;
C.过氧化氢分解生成水和氧气,由图可知,使用催化剂时吸附产物MS3能量更高,更容易脱附,故C正确;
D.催化剂改变反应速率,但是不会改变反应的热效应,不管使用哪种催化剂,的分解热效应是相同的,故D错误;
故选BD。
6.CD
【详解】A.测定中和反应的反应热需要测量反应前后温度的变化,但是应该使用量热计,不是在锥形瓶内,不可以达到实验目的,故A不符合题意;
B.反应中还需要控制温度、大理石颗粒度等变量,不可以达到实验目的,故B不符合题意;
C.用pH计测量室温下0.1 mol·L⁻¹氨水的pH,可以通过pH计算出氨水电离出的氢氧根离子浓度,从而测定温下的电离程度,故C符合题意;
D.乙醇含羟基,乙醛含有醛基,乙醛能和新制氢氧化铜悬浊液在加热条件下反应产生砖红色沉淀,能鉴别,故D符合题意;
故选CD。
7.(1) -246kJ•mol-1 减小
(2) 1.35 CH3*+H*=CH4*
(3) c>b>a 温度越高,浓度越大,则速率越大,由于转化率c>b>a,故甲烷的浓度c>b>a,且对应温度c>b>a,综上所述,v(CH4)逆由大到小顺序为c>b>a 0.16 16.7 33.4
(4)DE
【详解】(1)由盖斯定律可知,由反应“②—①”可得目标方程式,,反应③中碳元素转化为碳单质,反应④中碳单质转化为甲烷和二氧化碳,故反应③、④的存在会导致甲烷的产率减小。
(2)该反应历程中最大的能垒为,该步骤反应的化学方程式为。
(3)①反应速率与温度和浓度等有关,温度越高,浓度越大,则速率越大,c点甲烷的浓度大、温度高,故v(CH4)逆最大,其次为b点,最小的为a点的v(CH4)逆;初始总压为3MPa,其中氢气的分压为2MPa,T2温度下H2的转化率为80%,故10min时;根据题意可知T2时为平衡态,设反应后的压强为P总,可得:,恒容条件下,气体的压强比等于气体的物质的量之比,则,解得,
平衡时各组分的物质的量分数分别为、、、,则平衡分压为0.6Mpa、0.4Mpa、0.4Mpa、0.8Mpa,。
②由,故。
(4)A.中Fe为+3价,A错误;
B. 由图可知在制氢过程中、为催化剂,为中间产物,ZnFe2O4不能降低了H2O分解的活化能,B错误;
C. 、为催化剂,理论上不需要补充、,C错误;
D.反应3通入氩气作为保护气是因为氩气的化学性质稳定,D正确;
E. 由图所示贮氢过程可表示为3H2+2Mg2Cu=3MgH2+MgCu2,E正确;
答案选DE。
8.(1)不是
(2) 25a 16
(3) 30℃ A
(4) < 4.8<n<6 >
【详解】(1)反应Ⅲ=反应Ⅰ-反应Ⅱ,ΔH3=ΔH1-ΔH2=[-100.3-(-109.4)]kJ·mol-1=+9.1kJ·mol-1,△H3大于零,熵变小于零,自由能大于零,非自发,答案为:不是;
(2)设平衡时容器中的环戊二烯和环戊烷的物质的量为xmol,则反应中消耗的环戊二烯的物质的量为(a-x)mol,因为环戊烯的选择性为80%,所以环戊烯的物质的量为,根据碳原子守恒可得,解得,所以H2的转化率为;平衡时容器内环戊二烯和环戊烷的物质的量均为,环戊烯的物质的量为,则环戊二烯、环戊烷、环戍烯的物质的量分数分别为、、,则;故答案为:25a;16;
(3)根据图象可知,该体系温度为30℃左右时,环戊烯的选择性和环戊二烯的转化率都很高,因此最佳温度为30℃;
A.催化剂的活性在一定温度范围内最大,高于或低于这个温度范围,催化剂的活性降低,导致选择性降低,A正确;
B.催化剂对化学平衡移动无影响, B错误;
C.使用催化剂,降低反应活化能,催化剂的活性降低,活化能应增大,C错误;
故选A
故答案为:30;A;
(4)①根据图象可知,相同时间段内,环戊二烯表示的反应速率大于双环戊二烯表示的反应速率,因此T1>T2,温度高,反应速率快,达到平衡时所用的时间短,即m<2;在T2温度下,达到平衡,消耗双环戊二烯的物质的量为(3-0.6)mol=2.4mol,此时生成环戊二烯的物质的量为2.4×2mol=4.8mol,因为T1>T2,该反应为吸热反应,升高温度,平衡向正反应方向移动,则n>4.8mol,假设双环戊二烯全部反应,则生成环戊二烯的物质的量为6mol,但该反应为可逆反应,不能进行到底,因此n<6mol,综上所述,得出n的范围为4.8<n<6;故答案为<,4.8<n<6;
②由①的分析可知,T2温度下,达到平衡时,生成环戊二烯的物质的量为4.8mol,容器内气体的总物质的量为0.6mol+4.8mol=5.4mol,相同条件下,压强之比等于气体物质的量的之比,则平衡时,容器内的气体压强为起始时容器内压强的1.8倍,该反应为气体体积增大的反应,由于1.8>1.5,当容器内气体的压强为起始时的1.5倍时,反应正向进行,即v(正)>v(逆);故答案为:>。
9.(1) 0.01
(2)B
(3)
(4) 升高温度 反应III为吸热反应,升高温度,平衡正向移动,副产物增多,丙烯的选择性降低
【详解】(1)已知:
反应I:
反应II:
由盖斯定律可知,I+II得:,反应的焓变等于反应物的键能和减去生成物的键能和,由图表数据可知,;
分析表中数据:要合成得到更多的丙烯,应控制甲醇的最佳分压为0.01MPa,此时丙烯的选择性最高,而副产物乙烯的选择性最低;
(2)温度为500K时,在密闭反应器中加入2mol ,若只发生反应Ⅰ,由于反应为可逆反应不可能进行完全,则体系中的物质的量分数小于;已知:,温度为500K时,,;假设某一时刻,甲醇、甲醚、水的物质的量相等,此时体系中的物质的量分数为,则,反应正向移动,故平衡是体系中的物质的量分数大于;故选B;
(3)在恒容密闭容器中通入甲醇,初始压强为,反应达到平衡时压强为;“两步法”中,反应I为气体分子数不变的反应,反应II为气体分子数增加1的反应,则总压强的变化是由反应II引起的,根据化学方程式II体现的关系可知,平衡混合体系中,丙烯的分液为,体积分数为;若平衡时甲醇的转化率为60%,则反应甲醇0.6、平衡是甲醇0.4;平衡时丙烯;则反应II生成水2、消耗甲醚,反应I消耗甲醇[0.6-]=(0.8-0.5)、生成甲醚(0.8-0.5)、水(0.8-0.5),故平衡时甲醚为(0.8-0.5)-=(1.8-1.5)、水为2+(0.8-0.5)=(1.5-1.2),故反应II(OTP)的平衡常数;
(4)要提高丙烯的选择性,可采取的措施是适当升高温度;当温度高于285℃后,丙烯的选择性降低,其原因是反应III为吸热反应,升高温度,平衡正向移动,副产物增多,丙烯的选择性降低。
10.(1)
(2) > 含量先增大后减少
(3) 。
(3)①活化能越小,反应速率越快,则反应I与反应II的活化能:
(3) >
(4) B> A>C>D
【详解】(1)第I步反应为甲烷和反应生成、、一氧化碳和氢气,若生成1molH2,吸收QkJ热量,第I步的热化学方程式为;
(2)由图可知,第Ⅱ步的反应为,反应I+反应Ⅱ得:,则反应的,则1000℃时,该反应的平衡常数(kPa)2;由图可知,斜率更大受温度影响更大且随温度升高而变大,故也随温度升高而变大,升高温度平衡正向移动,则反应为吸热反应,焓变大于零;
(3)压强为100kPa时,将n(H2O):n(CH4)=3的混合气体投入温度为T℃的恒温恒容的密闭容器中,则水、甲烷初始压强分别为25kPa、75kPa;副反应为气体分子数不变的反应,不会改变压强,重整反应为气体分子数增加2的反应,达平衡时容器内的压强为140kPa,则反应甲烷压强为(140kPa-100kPa)÷2=20 kPa;
则H2O的平衡转化率为;由三段式可知,此时重整反应的,重整反应为吸热反应,K值变大,则温度升高,故温度T大于1000。
(4)已知降低温度时,增大,则说明正反应速率增大,反应正向进行,为放热反应;增加一氧化碳的投料会降低一氧化碳的转化率、降低温度平衡正向移动会提高一氧化碳的转化率,故温度A大于C大于D;投料比相同,B点转化率更低,则温度B大于A;故A、B、C、D四点中温度由高到低的顺序是B> A>C>D;
在C点所示投料比下,若一氧化碳和水的投料浓度均为1mol/L,一氧化碳的平衡转化率为50%:
此时=,,;
当CO转化率达到40%时:
。
19.(1)-90kJ/mol
(2)C
(3) BC 230°C以上,温度升高,反应I的平衡向逆反应方向移动,反应II的平衡向正反应方向移动,但温度对反应II的平衡影响更大
(4) 30%
(5) CO2+2e- +2H+ =HCOOH 3.6
【详解】(1);
(2)A.增大压强,反应II平衡不移动,反应I平衡正向移动导致二氧化碳浓度增大,从而使反应II平衡正向移动,一氧化碳浓度增大,A错误;
B.降低温度,反应II的正、逆反应速率均减小,B错误;
C.增大甲醇浓度,使反应I逆向移动,二氧化碳浓度增大,反应II正向移动,C正确;
D.恒温恒容下通入氦气,对于反应I来说各物质浓均不变,平衡不移动,D错误;
故选C。
(3)由图可知在相同温度下CZ(Zr-I)T催化剂对甲醇的选择性更高,温度为230oC时甲醇的产率最高,故合成甲醇的适宜条件选BC;
在230°C以上,升高温度,反应I为放热反应,平衡逆向移动,甲醇的产率降低;反应II为吸热反应,平衡正向移动,CO2的平衡转化率增大;升高温度对反应II的影响更大,导致CO2的平衡转化率增大,甲醇的产率降低;
(4)设反应I中二氧化碳转化了xmol,反应II中二氧化碳转化了ymol,可列出三段式:
反应达平衡时,CO2的转化率为50%,即x+y=1,气体体积减小10%,即平衡时气体的物质的量比原来少了10%,即,解得x=0.3,y=0.7,在达到平衡时, CH3OH的选择性:; 平衡时反应II中各物质的物质的量为:
,
设容器的体积为VL,平衡常数。
(5)该装置为电解池,Pt为阳极,Cu为阴极。铜电极上为二氧化碳得电子被还原,制备甲酸的电极反应式为:;铜电极上只生成5.6gCO时,电极反应为,即CO2变成CO,溶液增加质量为氧原子质量。生成5.6gCO时,增加氧原子质量为:,该电解池装置用了阳离子交换膜,同时会有氢离子迁移到铜极区,增加的氢离子质量为:,共增重3.6g。
相关试卷
这是一份山西高考化学三年(2021-2023)模拟题汇编-09化学反应的热效应,共42页。试卷主要包含了单选题,原理综合题等内容,欢迎下载使用。
这是一份山西高考化学三年(2021-2023)模拟题汇编-09化学反应的热效应,共42页。试卷主要包含了单选题,原理综合题等内容,欢迎下载使用。
这是一份广西高考化学三年(2020-2022)模拟题分类汇编-09化学反应的热效应,共77页。试卷主要包含了单选题,原理综合题等内容,欢迎下载使用。