年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    考点08 位置与函数-备战2020年中考数学考点一遍过 学案

    考点08 位置与函数-备战2020年中考数学考点一遍过第1页
    考点08 位置与函数-备战2020年中考数学考点一遍过第2页
    考点08 位置与函数-备战2020年中考数学考点一遍过第3页
    还剩30页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    考点08 位置与函数-备战2020年中考数学考点一遍过

    展开

    这是一份考点08 位置与函数-备战2020年中考数学考点一遍过,共33页。学案主要包含了名师点睛等内容,欢迎下载使用。
    考点08 位置与函数

    1.有序数对
    (1)有顺序的两个数a与b组成的数对,叫做有序数对.平面直角坐标系中的点和有序实数对是一一对应的.
    (2)经一点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b分别叫做点P的横坐标和纵坐标.有序实数对(a,b)叫做点P的坐标.
    2.点的坐标特征
    点的位置
    横坐标符号
    纵坐标符号
    第一象限

    +
    第二象限
    -
    +
    第三象限
    -
    -
    第四象限
    +
    -
    x轴上
    正半轴上
    +
    0
    负半轴上
    -
    0
    y轴上
    正半轴上
    0
    +
    负半轴上
    0
    -
    原点
    0
    0
    3.轴对称
    (1)点(x,y)关于x轴对称的点的坐标为(x,-y);
    (2)点(x,y)关于y轴对称的点的坐标为(-x,y).
    4.中心对称
    两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点为P'(-x,-y).
    5.图形在坐标系中的旋转
    图形(点)的旋转与坐标变化:
    (1)点P(x,y)绕坐标原点顺时针旋转90°,其坐标变为P′(y,-x);
    (2)点P(x,y)绕坐标原点顺时针旋转180°,其坐标变为P′(-x,-y);
    (3)点P(x,y)绕坐标原点逆时针旋转90°,其坐标变为P′(-y,x);
    (4)点P(x,y)绕坐标原点逆时针旋转180°,其坐标变为P′(-x,-y).
    6.图形在坐标系中的平移
    图形(点)的平移与坐标变化
    (1)点P(x,y)向右平移a个单位,其坐标变为P′(x+a,y);
    (2)点P(x,y)向左平移a个单位,其坐标变为P′(x-a,y);
    (3)点P(x,y)向上平移b个单位,其坐标变为P′(x,y+b);
    (4)点P(x,y)向下平移b个单位,其坐标变为P′(x,y-b).
    7.函数
    (1)常量和变量
    在一个变化过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量.
    【注意】①变量和常量是相对而言的,变化过程不同,它们可能发生改变,判断的前提条件是“在同一个变化过程中”,当变化过程改变时,同一个量的身份也可能随之改变.例如,在s=t中,当s一定时,v、t为变量,s为常量;当t一定时,s、v为变量,而t为常量.
    ②“常量”是已知数,是指在整个变化过程中保持不变的量,不能认为式中出现的字母就是变量,如在一个匀速运动中的速度v就是一个常量.
    ③变量、常量与字母的指数没有关系,如S=πr2中,变量是“S”和“r”,常量是“π”.
    ④判断一个量是不是变量,关键是看其数值是否发生变化.
    (2)函数的定义
    一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.
    例如:在s=60t中,有两个变量;s与t,当t变化时,s也随之发生变化,并且对于t在其取值范围内的每一个值,s都有唯一确定的值与之对应,我们就称t是自变量,s是t的函数.
    对函数定义的理解,主要抓住以下三点:
    ①有两个变量.
    ②函数不是数,函数的本质是对应,函数关系就是变量之间的对应关系,且是一种特殊的对应关系,一个变量的数值随着另一个变量数值的变化而变化.
    ③函数的定义中包括了对应值的存在性和唯一性两重意思,即对自变量的每一个确定的值,函数有且只有一个值与之对应,对自变量x的不同取值,y的值可以相同,如:函数y=x2,当x=1和x=-1时,y的对应值都是1.
    ④在某个变化过程中处于主导地位的变量即为自变量,随之变化且对应值有唯一确定性的另一个变量即为该自变量的函数.
    (3)函数取值范围的确定
    使函数有意义的自变量的取值的全体叫做自变量的取值范围,函数自变量的取值范围的确定必须考虑两个方面:①不同类型的函数关系式中自变量取值范围的求解方法;②当用函数关系式表示实际问题时,自变量的取值不但要使函数关系式有意义,而且还必须使实际问题有意义.
    (4)函数解析式及函数值
    函数解析式:用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法,这种式子叫做函数的解析式.
    ①函数解析式是等式.
    ②函数解析式中指明了哪个是自变量,哪个是函数,通常等式右边的代数式中的变量是自变量,等式左边的变量表示函数.
    ③书写函数的解析式是有顺序的.y=2x-1表示y是x的函数,若x=2y-1,则表示x是y的函数,即求y关于x的函数解析式时,必须用含x的代数式表示y,也就是等式左边是一个变量y,右边是一个含x的
    代数式.
    ④用数学式子表示函数的方法叫做解析式法.
    函数值:对于自变量x在取值范围内的某个确定的值a,函数y所对应的值为b,即当x=a,y=b时,b叫做自变量x的值为a时的函数值.
    (5)函数的图象及其画法
    一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.
    画函数的图象,可以运用描点法,其一般步骤如下:
    ①列表:表中列举一些自变量的值及其对应的函数值,自变量的取值不应使函数值太大或太小,以便于描点,点数一般以5到7个为宜.
    ②描点:在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点.描点时,要注意横、纵坐标的符号与点所在的象限(或坐标轴)之间的关系,描出的点大小要适中,位置要准确.
    ③连线:按照横坐标由小到大的顺序,把所描出的各点用平滑曲线连接起来.
    (6)函数的表示方法
    函数的表示方法一般有三种:解析式法、列表法和图象法,表示函数关系时,要根据具体情况选择适当的方法,有时为了全面地认识问题,需要几种方法同时使用.

    考向一 有序数对
    有序数对的作用:利用有序数对可以在平面内准确表示一个位置.有序数对一般用来表示位置,如用“排”“列”表示教师内座位的位置,用经纬度表示地球上的地点等.

    典例1 中国象棋具有悠久的历史,战国时期,就有了关于象棋的正式记载,如图是中国象棋棋局的一部分,如果用(2,-1)表示“炮”的位置,那么“将”的位置应表示为

    A.(-2,3) B.(0,-5) C.(-3,1) D.(-4,2)
    【答案】C
    【解析】用(2,-1)表示“炮”的位置,那么“将”的位置可以看做将“炮”向上平移2个单位,再向左平移5个单位,得:(-3,1).故选C.

    1.我们用以下表格来表示某超市的平面示意图.如果用(C,3)表示“体育用品”的位置,那么表示“儿童服装”的位置应记作

    A
    B
    C
    D
    1
    收银台
    收银台
    收银台
    收银台
    2
    酒水
    糖果
    小食品
    熟食
    3
    儿童服装
    化妆品
    体育用品
    蔬菜
    4
    入口
    服装
    家电
    日用杂品
    A.(A,3) B.(B,4) C.(C,2) D.(D,1)
    考向二 点的坐标特征
    1.象限角平分线上的点的坐标特征
    (1)第一、三象限角平分线上的点的横、纵坐标相等;第二、四象限角平分线上的点的横、纵坐标互为相反数;
    (2)平行于x轴(或垂直于y轴)的直线上的点的纵坐标相等,平行于y轴(或垂直于x轴)的直线上的点的横坐标相等.
    2.点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|,到坐标原点的距离为.

    典例2 在平面直角坐标系中,点P(–2,–3)在
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    【答案】C
    【解析】∵–2

    相关学案

    考点01 实数-备战2020年中考数学考点一遍过:

    这是一份考点01 实数-备战2020年中考数学考点一遍过,共29页。学案主要包含了实数的有关概念,实数的分类,实数与数轴,实数的运算,实数的大小比较,无理数的估算等内容,欢迎下载使用。

    考点27 概率-备战2020年中考数学考点一遍过:

    这是一份考点27 概率-备战2020年中考数学考点一遍过,共22页。学案主要包含了事件的分类,概率的计算,利用频率估计概率,概率的应用等内容,欢迎下载使用。

    考点26 统计-备战2020年中考数学考点一遍过:

    这是一份考点26 统计-备战2020年中考数学考点一遍过,共29页。学案主要包含了全面调查与抽样调查,总体,几种常见的统计图表,平均数,众数,方差等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map