2023年中考数学高频考点突破——实际问题与二次函数附答案
展开
这是一份2023年中考数学高频考点突破——实际问题与二次函数附答案,共31页。
2023年中考数学高频考点突破——实际问题与二次函数附答案
1.某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系.关于销售单价,日销售量,日销售利润的几组对应值如下表:
销售单价x(元)
85
95
105
115
日销售量y(个)
175
125
75
m
日销售利润w(元)
875
1875
1875
875
(注:日销售利润=日销售量×(销售单价﹣成本单价))
(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;
(2)根据以上信息,填空:
该产品的成本单价是_______元,当销售单价x=_______元时,日销售利润w最大,最大值是_______元;
(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?
2.某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)
(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)
(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.
(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?
3.为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1≤x≤15,且x为整数)每件产品的成本是p元,p与x之间符合一次函数关系,部分数据如表:
天数(x)
1
3
6
10
每件成本p(元)
7.5
8.5
10
12
任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:y=,
设李师傅第x天创造的产品利润为W元.
(1)直接写出p与x,W与x之间的函数关系式,并注明自变量x的取值范围:
(2)求李师傅第几天创造的利润最大?最大利润是多少元?
(3)任务完成后.统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?
4.随着龙虾节的火热举办,某龙虾养殖大户为了发挥技术优势,一次性收购了10000kg小龙虾,计划养殖一段时间后再出售.已知每天养殖龙虾的成本相同,放养10天的总成本为166000,放养30天的总成本为178000元.设这批小龙虾放养t天后的质量为akg,销售单价为y元/kg,根据往年的行情预测,a与t的函数关系为a= ,y与t的函数关系如图所示.
(1)设每天的养殖成本为m元,收购成本为n元,求m与n的值;
(2)求y与t的函数关系式;
(3)如果将这批小龙虾放养t天后一次性出售所得利润为W元.问该龙虾养殖大户将这批小龙虾放养多少天后一次性出售所得利润最大?最大利润是多少?
(总成本=放养总费用+收购成本;利润=销售总额﹣总成本)
5.某商店经销一种空气净化器,每台净化器的成本价为200元.经过一段时间的销售发现,每月的销售量y(台)与销售单价x(元)的关系为y=﹣2x+800.
(1)该商店每月的利润为W元,写出利润W与销售单价x的函数关系式;
(2)若要使每月的利润为20000元,销售单价应定为多少元?
(3)商店要求销售单价不低于280元,也不高于350元,求该商店每月的最高利润和最低利润分别为多少?
6.某市的重大惠民工程--公租房建设已陆续竣工,计划10年内解决低收入人群的住房问题,前6年,每年竣工投入使用的公租房面积(单位:百万平方米),与时间x的关系是,(单位:年, 且x为整数);后4年,每年竣工投入使用的公租房面积(单位:百万平方米),与时间x的关系是,(单位:年, 且x为整数)假设每年的公租房全部出租完另外,随着物价上涨等因素的影响,每年的租金也随之上调,预计,第x年投入使用的公租房的租金(单位:元)与时间(单位:年, 且x为整数)满足一次函数关系如下表:
(元)
50
52
54
56
58
(年)
1
2
3
4
5
(1)求出z与x的函数关系式;
(2)求政府在第几年投入的公租房收取的租金最多,最多为多少百万元;
(3)若第6年竣工投入使用的公租房可解决20万人的住房问题,政府计划在第10年投入的公租房总面积不变的情况下,要让人均住房面积比第6年人均住房面积提高,这样可解决住房的人数将比第6年减少,求a的值.(参考数据:)
7.我市“佳禾”农场的十余种有机蔬菜在北京市场上颇具竞争力.某种有机蔬菜上市后,一经销商在市场价格为10元/千克时,从“佳禾”农场收购了某种有机蔬菜2000 千克存放入冷库中.据预测,该种蔬菜的市场价格每天每千克将上涨0.2元,但冷库存放这批蔬菜时每天需要支出各种费用合计148元,已知这种蔬菜在冷库中最多保存90天,同时,平均每天将会有6千克的蔬菜损坏不能出售.
(1)若存放x天后,将这批蔬菜一次性出售,设这批蔬菜的销售总金额为y元,试写出y与x之间的函数关系式.
(2)经销商想获得利润7200元,需将这批蔬菜存放多少天后出售?(利润=销售总金额﹣收购成本﹣各种费用)
(3)经销商将这批蔬菜存放多少天后出售可获得最大利润?最大利润是多少?
8.某公司开发了一种新产品,现要在甲地或者乙地进行销售,设年销售量为x(件),其中x>0.
若在甲地销售,每件售价y(元)与x之间的函数关系式为y=﹣x+100,每件成本为20元,设此时的年销售利润为w甲(元)(利润=销售额﹣成本).
若在乙地销售,受各种不确定因素的影响,每件成本为a元(a为常数,18≤a≤25 ),每件售价为98元,销售x(件)每年还需缴纳x2元的附加费.设此时的年销售利润为w乙(元)(利润=销售额﹣成本﹣附加费).
(1)当a=18,且x=100是,w乙= 元;
(2)求w甲与x之间的函数关系式(不必写出x的取值范围),当w甲=15000时,若使销售量最大,求x的值;
(3)为完成x件的年销售任务,请你通过分析帮助公司决策,应选择在甲地还是在乙地销售才能使该公司所获年利润最大.
9.“姹紫嫣红苗木种植基地”尝试用单价随天数而变化的销售模式销售某种果苗,利用30天时间销售一种成本为10元/株的果苗,售后经过统计得到此果苗,单价在第x天(x为整数)销售的相关信息,如下图表所示:
销售量n(株)
销售单价m(元/株)
当1≤x≤20时,m=________
当21≤x≤30时,
(1)①请将表中当1≤x≤20时,m与x间关系式补充完整;②计算第几天该果苗单价为25元/株?
(2)求该基地销售这种果苗30天里每天所获利润y(元)关于x(天)的函数关系式;
(3)“吃水不忘挖井人”,为回馈本地居民,基地负责人决定将这30天中,其中获利最多的那天的利润全部捐出,进行“精准扶贫”.试问:基地负责人这次为“精准扶贫”捐赠多少钱?
10.某服装商场经销一种品牌运动套装,已知这种品牌运动套装的成本价为每套300元,市场调查发现,这种品牌运动套装每天的销售量y(个)与销售单价x(元)有如下关系:y=﹣x+600(300≤x≤600).设这种品牌运动套装每天的销售利润为w元.
(1)求w与x之间的函数关系式;
(2)这种品牌运动套装销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果物价部门规定这种品牌运动套装的销售单价不高于420元,该商店销售这种品牌运动套装每天要获得20000元的销售利润,销售单价应定为多少元?
11.某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:
①该产品90天售量(n件)与时间(第x天)满足一次函数关系,部分数据如下表:
时间(第x天)
1
2
3
10
…
日销售量(n件)
198
196
194
?
…
②该产品90天内每天的销售价格与时间(第x天)的关系如下表:
时间(第x天)
销售价格(元/件)
100
(1)求出第10天日销售量;
(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品的销售利润最大?最大利润是多少?【提示:每天销售利润=日销售量×(每件销售价格每件成本)】
(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.
12.某商品的进货价为每件30元,为了合理定价,先投放市场试销.据市场调查,销售价为每件40元时,每周的销售量是180件,而销售价每上涨1元,则每周的销售量就会减少5件,设每件商品的销售价上涨x元,每周的销售利润为y元.
(1)用含x的代数式表示:每件商品的销售价为 元,每件商品的利润为 元,每周的商品销售量为 件;
(2)求y关于x的函数关系式(不要求写出x的取值范围);
(3)应怎样确定销售价,使该商品的每周销售利润最大?最大利润是多少?
13.某大学生利用业余时间参与了一家网店经营,销售一种成本为30元/件的文化衫,根据以往的销售经验,他整理出这种文化衫的售价y1(元/件),销量y2(件)与第x(1≤x
相关试卷
这是一份北京课改版九年级上册22.2 圆的切线同步练习题,共38页。
这是一份2023年中考数学高频考点突破——实际问题与二次函数附答案,共35页。
这是一份2023年中考数学高频考点突破——圆的综合附答案,共37页。