中考数学二轮专项培优专题03 相似三角形的存在性问题(教师版)
展开专题三 相似三角形的存在性问题
【考题研究】
相似三角形的存在性问题是近几年中考数学的热点问题.解相似三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根。难点在于寻找分类标准,分类标准寻找的恰当,可以使得解的个数不重复不遗漏,也可以使得列方程和解方程又好又快.
【解题攻略】
相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.
判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验。
应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等.
应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组).
【解题类型及其思路】
相似三角形存在性问题需要注意的问题:
1、若题目中问题为△ABC∽△DEF ,则对应线段已经确定。
2、若题目中为△ABC与 △DEF相似,则没有确定对应线段,此时有三种情况:①△ABC∽△DEF ,
②△ABC∽△FDE、 ③△ABC∽△EFD、
3、若题目中为△ABC与 △DEF并且有 ∠A、 ∠D(或为90°),则确定了一条对应的线段,此时有二种情况:①、△ABC∽△DEF ,②、△ABC∽△DFE 需要分类讨论上述的各种情况。
【典例指引】
类型一 【确定符合相似三角形的点的坐标】
典例指引1.(2019·贵州中考真题)如图,抛物线与直线分别相交于,两点,且此抛物线与轴的一个交点为,连接,.已知,.
(1)求抛物线的解析式;
(2)在抛物线对称轴上找一点,使的值最大,并求出这个最大值;
(3)点为轴右侧抛物线上一动点,连接,过点作交轴于点,问:是否存在点使得以,,为顶点的三角形与相似?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.
【答案】(1);(2)点M的坐标为(,)时,取最大值为;(3)存在点.
【解析】
【分析】
(1)根据待定系数法求解即可;
(2)根据三角形的三边关系可知:当点、、三点共线时,可使的值最大,据此求解即可;
(3)先求得,再过点作于点,过点作轴于点,如图,这样就把以,,为顶点的三角形与相似问题转化为以,,为顶点的三角形与相似的问题,再分当时与时两种情况,分别求解即可.
【详解】
解:(1)将,代入得:
,解得:,
∴抛物线的解析式是;
(2)解方程组:,得,,
∵,∴
当点、、三点不共线时,根据三角形三边关系得,
当点、、三点共线时,,
∴当点、、三点共线时,取最大值,即为的长,
如图,过点作BE⊥x轴于点,则在中,由勾股定理得:,∴取最大值为;
易求得直线BC的解析式为:y=-x-3,抛物线的对称轴是直线,当时,,∴点M的坐标为(,);
∴点M的坐标为(,)时,取最大值为;
(3)存在点,使得以、、为顶点的三角形与相似.
设点坐标为,
在中,∵,∴,
在中,∵,∴,
∴,,
过点作于点,过点作轴于点,如图,
∵,,∴∽,
∵,
∴①当时,∽,
∴,解得,,(舍去)
∴点的纵坐标为,∴点为;
②当时,∽,
∴,解得(舍去),(舍去),
∴此时无符合条件的点;
综上所述,存在点.
【名师点睛】
本题考查的是二次函数的综合运用,主要考查待定系数法求二次函数的解析式、相似三角形的判定与性质、一元二次方程的解法、两函数的交点和线段差的最值等问题,其中(1)题是基础题型,(2)题的求解需运用三角形的三边关系,(3)题要注意分类求解,避免遗漏,解题的关键是熟练掌握二次函数图象上点的坐标特征、相似三角形的判定与性质以及一元二次方程的解法.
【举一反三】
(2019·海南模拟)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).
(1)求该抛物线所对应的函数解析式;
(2)该抛物线与直线 相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.
①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;
②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.
【答案】(1);(2)① ;② 存在,((2,)或(,).
【解析】
【详解】
试题分析:(1)由A、B两点的坐标,利用待定系数法可求得抛物线解析式;
(2)①可设出P点坐标,则可表示出M、N的坐标,联立直线与抛物线解析式可求得C、D的坐标,过C、D作PN的垂线,可用t表示出△PCD的面积,利用二次函数的性质可求得其最大值;
②当△CNQ与△PBM相似时有 或两种情况,利用P点坐标,可分别表示出线段的长,可得到关于P点坐标的方程,可求得P点坐标.
试题解析:(1)∵抛物线经过点A(1,0)和点B(5,0),
∴ ,解得
∴该抛物线对应的函数解析式为 ;
(2)①∵点P是抛物线上的动点且位于x轴下方,
∴可设P(t,)(1<t<5),
∵直线PM∥y轴,分别与x轴和直线CD交于点M、N,
∴M(t,0),N(t,),
∴.
联立直线CD与抛物线解析式可得 ,解得 或,
∴C(0,3),D(7, ),
分别过C、D作直线PN的直线,垂足分别为E、F,如图1,
则CE=t,DF=7﹣t,
∴ ,
∴当时,△PCD的面积有最大值,最大值为;
②存在.
∵∠CQN=∠PMB=90°,
∴当△CNQ与△PBM相似时,有 或两种情况,
∵CQ⊥PM,垂足为Q,
∴Q(t,3),且C(0,3),N(t, ),
∴CQ=t,,
∴ ,
∵P(t,),M(t,0),B(5,0),
∴BM=5﹣t,,
当时,则,即,解得t=2或t=5(舍去),此时P(2, );
当时,则,即,解得或(舍去),此时P(,);
综上可知存在满足条件的点P,其坐标为P(2,)或(,).
类型二 【确定符合相似三角形的动点的运动时间或路程等】
典例指引2.
(2019年广东模拟)如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线经过O,D,C三点.
(1)求AD的长及抛物线的解析式;
(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动,设运动时间为t秒,当t为何值时,以P,Q,C为顶点的三角形与△ADE相似?
(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.
【解析】
(1)根据折叠图形的轴对称性,△CED、△CBD全等,首先在Rt△CEO中求出OE的长,进而可得到AE的长;在Rt△AED中,AD=AB-BD、ED=BD,利用勾股定理可求出AD的长.进一步能确定D点坐标,利用待定系数法即可求出抛物线的解析式;
(2)由于∠DEC=90°,首先能确定的是∠AED=∠OCE,若以P、Q、C为顶点的三角形与△ADE相似,那么∠QPC=90°或∠PQC=90°,然后在这两种情况下,分别利用相似三角形的对应边成比例求出对应的t的值;
(3)由于以M,N,C,E为顶点的四边形,边和对角线都没明确指出,所以要分情况进行讨论:
①EC做平行四边形的对角线,那么EC、MN必互相平分,由于EC的中点正好在抛物线对称轴上,所以M点一定是抛物线的顶点;
②EC做平行四边形的边,那么EC、MN平行且相等,首先设出点N的坐标,然后结合E、C的横、纵坐标差表示出M点坐标,再将点M代入抛物线的解析式中,即可确定M、N的坐标.
试题解析:(1)∵四边形ABCO为矩形,
∴∠OAB=∠AOC=∠B=90°,AB=CO=8,AO=BC=10,
由题意,得△BDC≌△EDC,
∴∠B=∠DEC=90°,EC=BC=10,ED=BD,
由勾股定理易得EO=6,
∴AE=10﹣6=4,
设AD=x,则BD=ED=8﹣x,由勾股定理,得 ,
解得,x=3,∴AD=3,
∵抛物线过点D(3, 10),C(8, 0),O(0, 0),
∴,解得 ,
∴抛物线的解析式为: ;
(2)∵∠DEA+∠OEC=90°,∠OCE+∠OEC=90°,
∴∠DEA=∠OCE,
由(1)可得AD=3,AE=4,DE=5,
而CQ=t,EP=2t,∴PC=10﹣2t,
当∠PQC=∠DAE=90°,△ADE∽△QPC,
∴,即 ,
解得,
当∠QPC=∠DAE=90°,△ADE∽△PQC,
∴,即 , 解得,
∴当或时,以P、Q、C为顶点的三角形与△ADE相似;
(3)假设存在符合条件的M、N点,分两种情况讨论:
①EC为平行四边形的对角线,由于抛物线的对称轴经过EC中点,若四边形MENC是平行四边形,那么M点必为抛物线顶点; 则: ;而平行四边形的对角线互相平分,那么线段MN必被EC中点(4,3)平分,则;
②EC为平行四边形的边,则EC//MN,EC =MN,设N(4,m),
则M(4﹣8,m+6)或M(4+8,m﹣6);
将M(﹣4,m+6)代入抛物线的解析式中,得:m=﹣38,
此时 N(4,﹣38)、M(﹣4,﹣32);
将M(12,m﹣6)代入抛物线的解析式中,得:m=﹣26,
此时 N(4,﹣26)、M(12,﹣32);
综上,存在符合条件的M、N点,且它们的坐标为:
①, ; ②, ;
③, .
【名师点睛】
本题考查了二次函数综合题,题目涉及了图形的折叠变换、相似三角形的判定和性质、平行四边形的判定和性质等重点知识.后两问的情况较多,需要进行分类讨论,以免漏解.
【举一反三】
(2019·湖南模拟)如图,已知直线y=-x+3与x轴、y轴分别交于A,B两点,抛物线y=-x2+bx+c经过A,B两点,点P在线段OA上,从点O出发,向点A以1个单位/秒的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以个单位/秒的速度匀速运动,连接PQ,设运动时间为t秒.
(1)求抛物线的解析式;
(2)问:当t为何值时,△APQ为直角三角形;
(3)过点P作PE∥y轴,交AB于点E,过点Q作QF∥y轴,交抛物线于点F,连接EF,当EF∥PQ时,求点F的坐标;
(4)设抛物线顶点为M,连接BP,BM,MQ,问:是否存在t的值,使以B,Q,M为顶点的三角形与以O,B,P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由.
【答案】(1)y=-x2+2x+3;(2)t=1或t=;(3)点F的坐标为(2,3).(4).
【解析】
【详解】
试题分析:(1)先由直线AB的解析式为y=-x+3,求出它与x轴的交点A、与y轴的交点B的坐标,再将A、B两点的坐标代入y=-x2+bx+c,运用待定系数法即可求出抛物线的解析式;
(2)由直线与两坐标轴的交点可知:∠QAP=45°,设运动时间为t秒,则QA=t,PA=3-t,然后再图①、图②中利用特殊锐角三角函数值列出关于t的方程求解即可;
(3)设点P的坐标为(t,0),则点E的坐标为(t,-t+3),则EP=3-t,点Q的坐标为(3-t,t),点F的坐标为(3-t,-(3-t)2+2(3-t)+3),则FQ=3t-t2,EP∥FQ,EF∥PQ,所以四边形为平行线四边形,由平行四边形的性质可知EP=FQ,从而的到关于t的方程,然后解方程即可求得t的值,然后将t=1代入即可求得点F的坐标;
(4)设运动时间为t秒,则OP=t,BQ=(3-t),然后由抛物线的解析式求得点M的坐标,从而可求得MB的长度,然后根据相似相似三角形的性质建立关于t的方程,然后即可解得t的值.
试题解析:(1)∵y=-x+3与x轴交于点A,与y轴交于点B,
∴当y=0时,x=3,即A点坐标为(3,0),
当x=0时,y=3,即B点坐标为(0,3),
将A(3,0),B(0,3)代入y=-x2+bx+c,
得,解得
∴抛物线的解析式为y=-x2+2x+3;
(2)∵OA=OB=3,∠BOA=90°,
∴∠QAP=45°.
如图①所示:∠PQA=90°时,设运动时间为t秒,则QA=t,PA=3-t.
在Rt△PQA中,,即:,解得:t=1;
如图②所示:∠QPA=90°时,设运动时间为t秒,则QA=t,PA=3-t.
在Rt△PQA中,,即:,解得:t=.
综上所述,当t=1或t=时,△PQA是直角三角形;
(3)如图③所示:
设点P的坐标为(t,0),则点E的坐标为(t,-t+3),则EP=3-t,点Q的坐标为(3-t,t),点F的坐标为(3-t,-(3-t)2+2(3-t)+3),则FQ=3t-t2.
∵EP∥FQ,EF∥PQ,
∴EP=FQ.即:3-t=3t-t2.
解得:t1=1,t2=3(舍去).
将t=1代入F(3-t,-(3-t)2+2(3-t)+3),得点F的坐标为(2,3).
(4)如图④所示:
设运动时间为t秒,则OP=t,BQ=(3-t).
∵y=-x2+2x+3=-(x-1)2+4,
∴点M的坐标为(1,4).
∴MB=.
当△BOP∽△QBM时,即:,整理得:t2-3t+3=0,
△=32-4×1×3<0,无解:
当△BOP∽△MBQ时,即:,解得t=.
∴当t=时,以B,Q,M为顶点的三角形与以O,B,P为顶点的三角形相似.
类型三 【确定符合相似三角形的函数解析式或字母参数的值】
典例指引3.(2019·江苏中考真题)如图,二次函数图象的顶点为,对称轴是直线,一次函数的图象与轴交于点,且与直线关于的对称直线交于点.
(1)点的坐标是 ______;
(2)直线与直线交于点,是线段上一点(不与点、重合),点的纵坐标为.过点作直线与线段、分别交于点,,使得与相似.
①当时,求的长;
②若对于每一个确定的的值,有且只有一个与相似,请直接写出的取值范围 ______.
【答案】(1);(2)①;②.
【解析】
【分析】
(1)直接用顶点坐标公式求即可;
(2)由对称轴可知点C(2,),A(-,0),点A关于对称轴对称的点(,0),借助AD的直线解析式求得B(5,3);①当n=时,N(2,),可求DA=,DN=,CD=,当PQ∥AB时,△DPQ∽△DAB,DP=9;当PQ与AB不平行时,DP=9;②当PQ∥AB,DB=DP时,DB=3,DN=,所以N(2,),则有且只有一个△DPQ与△DAB相似时,<n<.
【详解】
(1)顶点为;
故答案为;
(2)对称轴,
,
由已知可求,
点关于对称点为,
则关于对称的直线为,
,
①当时,,
,,
当时,,
,
,
;
当与不平行时,,
,
,
;
综上所述;
②当,时,
,
,
,
,
∴有且只有一个与相似时,;
故答案为;
【点睛】
本题考查二次函数的图象及性质,三角形的相似;熟练掌握二次函数的性质,三角形相似的判定与性质是解题的关键.
【举一反三】
(2018武汉中考)抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.
(1)直接写出抛物线L的解析式;
(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;
(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.
【答案】(1)y=﹣x2+2x+1;(2)-3;(3)当m=2﹣1时,点P的坐标为(0,)和(0,);当m=2时,点P的坐标为(0,1)和(0,2).
【解析】
【分析】(1)根据对称轴为直线x=1且抛物线过点A(0,1)利用待定系数法进行求解可即得;
(2)根据直线y=kx﹣k+4=k(x﹣1)+4知直线所过定点G坐标为(1,4),从而得出BG=2,由S△BMN=S△BNG﹣S△BMG=BG•xN﹣BG•xM=1得出xN﹣xM=1,联立直线和抛物线解析式求得x=,根据xN﹣xM=1列出关于k的方程,解之可得;
(3)设抛物线L1的解析式为y=﹣x2+2x+1+m,知C(0,1+m)、D(2,1+m)、F(1,0),再设P(0,t),分△PCD∽△POF和△PCD∽△POF两种情况,由对应边成比例得出关于t与m的方程,利用符合条件的点P恰有2个,结合方程的解的情况求解可得.
【详解】(1)由题意知,解得:,
∴抛物线L的解析式为y=﹣x2+2x+1;
(2)如图1,设M点的横坐标为xM,N点的横坐标为xN,
∵y=kx﹣k+4=k(x﹣1)+4,
∴当x=1时,y=4,即该直线所过定点G坐标为(1,4),
∵y=﹣x2+2x+1=﹣(x﹣1)2+2,
∴点B(1,2),
则BG=2,
∵S△BMN=1,即S△BNG﹣S△BMG=BG•(xN﹣1)-BG•(xM-1)=1,
∴xN﹣xM=1,
由得:x2+(k﹣2)x﹣k+3=0,
解得:x==,
则xN=、xM=,
由xN﹣xM=1得=1,
∴k=±3,
∵k<0,
∴k=﹣3;
(3)如图2,
设抛物线L1的解析式为y=﹣x2+2x+1+m,
∴C(0,1+m)、D(2,1+m)、F(1,0),
设P(0,t),
(a)当△PCD∽△FOP时,,
∴,
∴t2﹣(1+m)t+2=0①;
(b)当△PCD∽△POF时,,
∴,
∴t=(m+1)②;
(Ⅰ)当方程①有两个相等实数根时,
△=(1+m)2﹣8=0,
解得:m=2﹣1(负值舍去),
此时方程①有两个相等实数根t1=t2=,
方程②有一个实数根t=,
∴m=2﹣1,
此时点P的坐标为(0,)和(0,);
(Ⅱ)当方程①有两个不相等的实数根时,
把②代入①,得:(m+1)2﹣(m+1)+2=0,
解得:m=2(负值舍去),
此时,方程①有两个不相等的实数根t1=1、t2=2,
方程②有一个实数根t=1,
∴m=2,此时点P的坐标为(0,1)和(0,2);
综上,当m=2﹣1时,点P的坐标为(0,)和(0,);
当m=2时,点P的坐标为(0,1)和(0,2).
【新题训练】
1.(2019·长沙市开福区青竹湖湘一外国语学校初三月考)如图1,已知抛物线;C1:y=﹣(x+2)(x﹣m)(m>0)与x轴交于点B、C(点B在点C的左侧),与y轴交于点E.
(1)求点B、点C的坐标;
(2)当△BCE的面积为6时,若点G的坐标为(0,b),在抛物线C1的对称轴上是否存在点H,使得△BGH的周长最小,若存在,则求点H的坐标(用含b的式子表示);若不存在,则请说明理由;
(3)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.
【答案】(1)点B、C的坐标分别为:(﹣2,0)、(m,0);(2)存在,点H(1,b);(3)存在,m=2
【详解】
解:(1),令y=0,则x=﹣2或m,
故点B、C的坐标分别为:(﹣2,0)、(m,0);
(2)存在,理由:
,令x=0,则y=2,故点E(0,2),
△BCE的面积为: ,解得:m=4,
则抛物线的对称轴为: ,
点B关于函数对称轴的对称点为点C(m,0),连接CE交对称轴于点H,则点H为所求,
将点C、E的坐标代入一次函数表达式并解得:
直线CE的表达式为: ,当x=1时, ,
故点H(1,b);
(3)∵OE=OB=2,故∠EBO=45°,
过点F作FT⊥x轴于点F;
①当△BEC∽△BCF时,
则BC2=BE•BF,∠FBO=EBO=45°,
则直线BF的函数表达式为:y=﹣x﹣2,故点F(x,﹣x﹣2);
将点F的坐标代入抛物线表达式得:
解得:x=﹣2(舍去)或2m,
故点F(2m,﹣2m﹣2),
则
∵BC2=BE•BF,
则 解得: (舍去负值),
故
②当△BEC∽△FCB时,
则BC2=BF•EC,∠CBF=∠ECO,
则△BFT∽△COE,
则 ,则点
将点F的坐标代入抛物线表达式得:
解得:x=﹣2(舍去)或m+2;
则点
BC2=BF•EC,则
化简得:m3+4m2+4m=m3+4m2+4m+16,
此方程无解;
综上,m=2.
2.(2020·浙江初三期末)边长为2的正方形在平面直角坐标系中的位置如图所示,点是边的中点,连接,点在第一象限,且,.以直线为对称轴的抛物线过,两点.
(1)求抛物线的解析式;
(2)点从点出发,沿射线每秒1个单位长度的速度运动,运动时间为秒.过点作于点,当为何值时,以点,,为顶点的三角形与相似?
(3)点为直线上一动点,点为抛物线上一动点,是否存在点,,使得以点,,,为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.
【答案】(1);(2)或时,以点,,为顶点的三角形与相似;(3)存在,四边形是平行四边形时,,;四边形是平行四边形时,,;四边形是平行四边形时,,
【详解】
解:(1)过点作轴于点.
∵四边形是边长为2的正方形,是的中点,
∴,,.
∵,∴.
∵,∴.
在和中,
∴,,.
∴点的坐标为.
∵抛物线的对称轴为直线即直线,∴可设抛物线的解析式为,
将、点的坐标代入解析式,得,解得.
∴抛物线的解析式为;
(2)①若,则,,
∴,∴四边形是矩形,
∴,∴;
②若,则,
∴.
∴.
∴,∴.
∵,∴,∴.
∵,
∴,,
综上所述:或时,以点,,为顶点的三角形与相似:
(3)存在,①若以DE为平行四边形的对角线,如图2,
此时,N点就是抛物线的顶点(2,),
由N、E两点坐标可求得直线NE的解析式为:y=x;
∵DM∥EN,
∴设DM的解析式为:y=x+b,
将D(1,0)代入可求得b=−,
∴DM的解析式为:y=x−,
令x=2,则y=,
∴M(2,);
②过点C作CM∥DE交抛物线对称轴于点M,连接ME,如图3,
∵CM∥DE,DE⊥CD,
∴CM⊥CD,
∵OC⊥CB,
∴∠OCD=∠BCM,
在△OCD和△BCM中
,
∴△OCD≌△BCM(ASA),
∴CM=CD=DE,BM=OD=1,
∴CDEM是平行四边形,
即N点与C占重合,
∴N(0,2),M(2,3);
③N点在抛物线对称轴右侧,MN∥DE,如图4,
作NG⊥BA于点G,延长DM交BN于点H,
∵MNED是平行四边形,
∴∠MDE=MNE,∠ENH=∠DHB,
∵BN∥DF,
∴∠ADH=∠DHB=∠ENH,
∴∠MNB=∠EDF,
在△BMN和△FED中
∴△BMN≌△FED(AAS),
∴BM=EF=1,
BN=DF=2,
∴M(2,1),N(4,2);
综上所述,
四边形是平行四边形时,,;
四边形是平行四边形时,,;
四边形是平行四边形时,,.
3.(2020·长沙市长郡双语实验中学初三开学考试)如图,抛物线y=ax2﹣2ax+c的图象经过点C(0,﹣2),顶点D的坐标为(1,﹣),与x轴交于A、B两点.
(1)求抛物线的解析式.
(2)连接AC,E为直线AC上一点,当△AOC∽△AEB时,求点E的坐标和的值.
(3)点C关于x轴的对称点为H,当FC+BF取最小值时,在抛物线的对称轴上是否存在点Q,使△QHF是直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
【答案】(1);(2)E(﹣,﹣);;(3)(1,)或(1,)或Q(1,2)或Q(1,﹣).
【详解】
(1)由题可列方程组:,解得:
∴抛物线解析式为:y=x2﹣x﹣2;
(2)由题意和勾股定理得,∠AOC=90°,AC=,AB=4,
设直线AC的解析式为:y=kx+b,则,
解得:,
∴直线AC的解析式为:y=﹣2x﹣2;
当△AOC∽△AEB时=()2=()2=,
∵S△AOC=1,
∴S△AEB=,
∴AB×|yE|=,AB=4,则yE=﹣,
则点E(﹣,﹣);
由△AOC∽△AEB得:
∴;
(3)如图2,连接BF,过点F作FG⊥AC于G,
则FG=CFsin∠FCG=CF,
∴CF+BF=GF+BF≥BE,
当折线段BFG与BE重合时,取得最小值,
由(2)可知∠ABE=∠ACO
|y|=OBtan∠ABE=OBtan∠ACO=3×=,
∴当y=﹣时,即点F(0,﹣),CF+BF有最小值;
①当点Q为直角顶点时(如图3) F(0,﹣),
∵C(0,﹣2)
∴H(0,2)设Q(1,m),过点Q作QM⊥y轴于点M.
则Rt△QHM∽Rt△FQM∴QM2=HM•FM,
∴12=(2﹣m)(m+),
解得:m=,则点Q(1,)或(1,)
当点H为直角顶点时:点H(0,2),则点Q(1,2);当点F为直角顶点时:
同理可得:点Q(1,﹣);
综上,点Q的坐标为:(1,)或(1,)或Q(1,2)或Q(1,﹣).
4.(2019·贵州初三)如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.
(1)求抛物线的解析式;
(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;
(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.
【答案】(1) 抛物线的解析式为y=x2-2x+1,(2) 四边形AECP的面积的最大值是,点P(,﹣);(3) Q(4,1)或(-3,1).
【详解】
解:(1)将A(0,1),B(9,10)代入函数解析式得:
×81+9b+c=10,c=1,解得b=−2,c=1,
所以抛物线的解析式y=x2−2x+1;
(2)∵AC∥x轴,A(0,1),
∴x2−2x+1=1,解得x1=6,x2=0(舍),即C点坐标为(6,1),
∵点A(0,1),点B(9,10),
∴直线AB的解析式为y=x+1,设P(m,m2−2m+1),∴E(m,m+1),
∴PE=m+1−(m2−2m+1)=−m2+3m.
∵AC⊥PE,AC=6,
∴S四边形AECP=S△AEC+S△APC=AC⋅EF+AC⋅PF
=AC⋅(EF+PF)=AC⋅EP
=×6(−m2+3m)=−m2+9m.
∵0
(3)∵y=x2−2x+1=(x−3)2−2,
P(3,−2),PF=yF−yp=3,CF=xF−xC=3,
∴PF=CF,∴∠PCF=45∘,
同理可得∠EAF=45∘,∴∠PCF=∠EAF,
∴在直线AC上存在满足条件的点Q,
设Q(t,1)且AB=,AC=6,CP=,
∵以C,P,Q为顶点的三角形与△ABC相似,
①当△CPQ∽△ABC时,
CQ:AC=CP:AB,(6−t):6=,解得t=4,所以Q(4,1);
②当△CQP∽△ABC时,
CQ:AB=CP:AC,(6−t)6,解得t=−3,所以Q(−3,1).
综上所述:当点P为抛物线的顶点时,在直线AC上存在点Q,使得以C,P,Q为顶点的三角形与△ABC相似,Q点的坐标为(4,1)或(−3,1).
5.(2020·河南初三)如图,在平面直角坐标系中,抛物线与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.
(1)求该抛物线的解析式;
(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;
(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.
【答案】(1);(2)PG=;(3)存在点P,使得以P、B、G为顶点的三角形与△DEH相似,此时m的值为﹣1或.
【详解】
解:(1)∵抛物线与x轴交于点A(1,0),与y轴交于点B(0,4),
∴,解得.
∴抛物线的解析式为.
(2)∵E(m,0),B(0,4),PE⊥x轴交抛物线于点P,交BC于点G,
∴P(m,),G(m,4).
∴PG=.
(3)在(2)的条件下,存在点P,使得以P、B、G为顶点的三角形与△DEH相似.
∵,∴当y=0时,,解得x=1或﹣3.
∴D(﹣3,0).
当点P在直线BC上方时,﹣3<m<0.
设直线BD的解析式为y=kx+4,
将D(﹣3,0)代入,得﹣3k+4=0,解得k=.
∴直线BD的解析式为y=x+4. ∴H(m,m+4).
分两种情况:
①如果△BGP∽△DEH,那么,即.
由﹣3<m<0,解得m=﹣1.
②如果△PGB∽△DEH,那么,即.
由﹣3<m<0,解得m=.
综上所述,在(2)的条件下,存在点P,使得以P、B、G为顶点的三角形与△DEH相似,此时m的值为﹣1或.
6.(2020·浙江初三期末)如图①,在平面直角坐标系中,抛物线的对称轴为直线,将直线绕着点顺时针旋转的度数后与该抛物线交于两点(点在点的左侧),点是该抛物线上一点
(1)若,求直线的函数表达式
(2)若点将线段分成的两部分,求点的坐标
(3)如图②,在(1)的条件下,若点在轴左侧,过点作直线轴,点是直线上一点,且位于轴左侧,当以,,为顶点的三角形与相似时,求的坐标
【答案】(1);(2)或;(3),,,
【详解】
(1)如图①,设直线AB与x轴的交点为M.
∵∠OPA=45°,
∴OM=OP=2,即M(-2,0).
设直线AB的解析式为y=kx+b(k≠0),将M(-2,0),P(0,2)两点坐标代入,得
,
解得,.
故直线AB的解析式为y=x+2;
(2)①
设(a>0)
∵点A、点B在直线y=x+2上和抛物线y=x2的图象上,
∴,
∴,
∴
解得,,(舍去)
②
设(a>0)
∵点A、点B在直线y=x+2上和抛物线y=x2的图象上,
∴,
∴,
∴
解得:,(舍去)
综上或
(3),
,
①
此时,关于轴对称,为等腰直角三角形
②
此时满足,左侧还有也满足
,,,四点共圆,易得圆心为中点
设,
∵
且不与重合
,
为正三角形,
过作,则,
∵
∴
∴
解得,
∴
∵
∴
∴
解得,
∴
综上所述,满足条件的点M的坐标为:,,,.
7.(2020·上海初三)如图,在平面直角坐标系xOy中,抛物线y=x2+mx+n经过点B(6,1),C(5,0),且与y轴交于点A.
(1)求抛物线的表达式及点A的坐标;
(2)点P是y轴右侧抛物线上的一点,过点P作PQ⊥OA,交线段OA的延长线于点Q,如果∠PAB=45°.求证:△PQA∽△ACB;
(3)若点F是线段AB(不包含端点)上的一点,且点F关于AC的对称点F′恰好在上述抛物线上,求FF′的长.
【答案】(1)y=x2﹣x+5,点A坐标为(0,5);(2)详见解析;(3).
【详解】
解:(1)将B(6,1),C(5,0)代入抛物线解析式y=x2+mx+n,
得
解得,m=﹣,n=5,
则抛物线的解析式为:y=x2﹣x+5,点A坐标为(0,5);
(2)∵AC=,BC=,AB=,
∴AC2+BC2=AB2,
∴△ABC为直角三角形,且∠ACB=90°,
当∠PAB=45°时,点P只能在点B右侧,过点P作PQ⊥y 轴于点Q,
∴∠QAB+∠OAB=180°﹣∠PAB=135°,
∴∠QAP+∠CAB=135°﹣∠OAC=90°,
∵∠QAP+∠QPA=90°,∴∠QPA=∠CAB,
又∵∠AQP=∠ACB=90°,∴△PQA∽△ACB;
(3)做点B关于AC的对称点B',则A,F',B'三点共线,
由于AC⊥BC,根据对称性知点B'(4,﹣1),
将B'(4,﹣1)代入直线y=kx+5,
∴k=﹣,∴yAB'=﹣x+5,
联立解得,x1=,x2=0(舍去),
则F'(,﹣),
将B(6,1),B'(4,﹣1)代入直线y=mx+n,
得,解得,∴yBB'=x﹣5,
由题意知,kFF'=KBB',∴设yFF'=x+b,
将点F'(,﹣)代入,得,b=﹣,
∴yFF'=x﹣,
联立解得,
∴F(,),
则FF'==.
8.(2019·江苏初三期末)如图,抛物线y=ax2+5ax+c(a<0)与x轴负半轴交于A、B两点(点A在点B的左侧),与y轴交于C点,D是抛物线的顶点,过D作DH⊥x轴于点H,延长DH交AC于点E,且S△ABD:S△ACB=9:16,
(1)求A、B两点的坐标;
(2)若△DBH与△BEH相似,试求抛物线的解析式.
【答案】(1) ;(2) 见解析.
【解析】
【详解】
解:(1) ∴
∵C(0,c) ∴OC=-c,DH= ∵S△ABD:S△ACB=9∶16
∴ ∴
∴ ∴
(2)① ∵EH∥OC ∴△AEH∽△ACO ∴
∴ ∴
∵ ∵△DBH与△BEH相似
∴∠BDH=∠EBH, 又∵∠BHD=∠BHE=90°∴△DBH∽△BEH
∴ ∴
∴(舍去正值)
∴
9.(2019·湖南中考模拟)如图,顶点坐标为(2,﹣1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.
(1)求抛物线的表达式;
(2)设抛物线的对称轴与直线BC交于点D,连接AC、AD,求△ACD的面积;
(3)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F.问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似?若存在,求点E的坐标;若不存在,请说明理由.
【答案】(1)y==x2-4x+3;(2)AS△ACD=2;(3)①∠DFE=90°时,E1(2+,1-); E2(2-,1+);②∠EDF=90°时,E3(1,2)、E4(4,-1).
【详解】
解:(1)依题意,设抛物线的解析式为 y=a(x-2)2-1,代入C(O,3)后,得:
a(0-2)2-1=3,a=1
∴抛物线的解析式:y=(x-2)2-1=x2-4x+3.
(2)由(1)知,A(1,0)、B(3,0);
设直线BC的解析式为:y=kx+3,代入点B的坐标后,得:
3k+3=0,k=-1
∴直线BC:y=-x+3;
由(1)知:抛物线的对称轴:x=2,则 D(2,1);
∴AD==,AC==,CD==2,
即:AC2=AD2+CD2,△ACD是直角三角形,且AD⊥CD;
∴S△ACD=AD•CD=××2=2.
(3)由题意知:EF∥y轴,则∠FED=∠OCB,若△OCB与△FED相似,则有:
①∠DFE=90°,即 DF∥x轴;
将点D纵坐标代入抛物线的解析式中,得:
x2-4x+3=1,解得 x=2±;
当x=2+时,y=-x+3=1-;
当x=2-时,y=-x+3=1+;
∴E1(2+,1-)、E2(2-,1+).
②∠EDF=90°;
易知,直线AD:y=x-1,联立抛物线的解析式有:
x2-4x+3=x-1,
x2-5x+4=0,
解得 x1=1、x2=4;
当x=1时,y=-x+3=2;
当x=4时,y=-x+3=-1;
∴E3(1,2)、E4(4,-1);
综上,存在符合条件的点E,且坐标为:(2+,1-)、(2-,1+)、(1,2)或(4,-1).
10.(2019·西安市铁一中学中考模拟)如图,抛物线的顶点坐标为,并且与轴交于点,与轴交于、两点.
()求抛物线的表达式.
()如图,设抛物线的对称轴与直线交于点,点为直线上一动点,过点作轴的平行线,与抛物线交于点,问是否存在点,使得以、、为顶点的三角形与相似.若存在,求出点的坐标;若不存在,请说明理由.
【答案】(1);(2)或或或.
【详解】
()该抛物线的顶点坐标为,所以该抛物线的解析式为,又该抛物线过点,代入得:
,解得,故该抛物线的解析式为+3.
()假设存在点E,使得以D、E、F为顶点的三角形与△BCO相似.
由(1)知,该抛物线的解析式是y=x2-4x+3,即y=(x-1)(x-3),
∴该抛物线与x轴的交点坐标分别是A(1,0),B(3,0).
∵C(0,3),
∴易求直线BC的解析式为:y=-x+3.
∴∠OBC=∠OCB=45°.
又∵点D是对称轴上的一点,
∴D(2,1).
如图,连接DF.
∵EF∥y轴,
∴只有∠EFD=∠COB=90°.
∵以D、E、F为顶点的三角形与△BCO相似,
∴∠DEF=∠FDE=45°,
∴只有△EFD∽△COB.
设E(x,-x+3),则F(x,1),
∴1=x2-4x+3,
解得x=2± ,
当x=2+时,y=-x+3=1-;
当x=2-时,y=-x+3=1+;
∴E1(2-,1+)、E2(2+,1-).
∠EDF=90°;易知,直线AD:y=x-1,联立抛物线的解析式有:
x2-4x+3=x-1,解得 x1=1、x2=4;
当x=1时,y=-x+3=2;
当x=4时,y=-x+3=-1;
∴E3(1,2)、E4(4,-1).
∴综上,点E的坐标为(2-,1+)或(2+,1-)或(1,2)或(4,-1).
11.(2019·广东中考模拟)如图,在平面直角坐标系xoy中,直线与x 轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是且经过A、C两点,与x轴的另一交点为点B.
(1)①直接写出点B的坐标;②求抛物线解析式.
(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标.
(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,直接写出点M的坐标;若不存在,请说明理由.
【答案】(1)①B(1,0)②(2)4,P(-2,3);(3)存在M1(0,2),M2(-3,2), M3(2,-3),M4(5,-18), 使得以点 A、M、N为顶点的三角形与△ABC相似.
【详解】
(1)①y=x+2
当x=0时,y=2,当y=0时,x=﹣4,
∴C(0,2),A(﹣4,0),
由抛物线的对称性可知:点A与点B关于x=﹣对称,
∴点B的坐标为(1,0).
②∵抛物线y=ax2+bx+c过A(﹣4,0),B(1,0),
∴可设抛物线解析式为y=a(x+4)(x﹣1),
又∵抛物线过点C(0,2),
∴2=﹣4a
∴a=-
∴y=-x2-x+2.
(2)设P(m,-m2-m+2).
过点P作PQ⊥x轴交AC于点Q,
∴Q(m,m+2),
∴PQ=-m2-m+2﹣(m+2)
=-m2﹣2m,
∵S△PAC=×PQ×4,
=2PQ=﹣m2﹣4m=﹣(m+2)2+4,
∴当m=﹣2时,△PAC的面积有最大值是4,
此时P(﹣2,3).
(3)在Rt△AOC中,tan∠CAO=在Rt△BOC中,tan∠BCO=,
∴∠CAO=∠BCO,
∵∠BCO+∠OBC=90°,
∴∠CAO+∠OBC=90°,
∴∠ACB=90°,
∴△ABC∽△ACO∽△CBO,
如下图:
①当M点与C点重合,即M(0,2)时,△MAN∽△BAC;
③ 根据抛物线的对称性,当M(﹣3,2)时,△MAN∽△ABC;
④ 当点M在第四象限时,设M(n,-n2-n+2),则N(n,0)
∴MN=n2+n﹣2,AN=n+4
当时,MN=AN,即n2+n﹣2=(n+4)
整理得:n2+2n﹣8=0
解得:n1=﹣4(舍),n2=2
∴M(2,﹣3);
当时,MN=2AN,即n2+n﹣2=2(n+4),
整理得:n2﹣n﹣20=0
解得:n1=﹣4(舍),n2=5,
∴M(5,﹣18).
综上所述:存在M1(0,2),M2(﹣3,2),M3(2,﹣3),M4(5,﹣18),使得以点A、M、N为顶点的三角形与△ABC相似.
12.(2019·江苏泗洪姜堰实验学校中考模拟)如图,抛物线与x轴交于A、C两点,与y轴交于B点.
(1)求△AOB的外接圆的面积;
(2)若动点P从点A出发,以每秒2个单位沿射线AC方向运动;同时,点Q从点B出发,以每秒1个单位沿射线BA方向运动,当点P到达点C处时,两点同时停止运动.问当t为何值时,以A、P、Q为顶点的三角形与△OAB相似?
(3)若M为线段AB上一个动点,过点M作MN平行于y轴交抛物线于点N.
①是否存在这样的点M,使得四边形OMNB恰为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
②当点M运动到何处时,四边形CBNA的面积最大?求出此时点M的坐标及四边形CBAN面积的最大值.
【答案】(1)π;(2)当t=时,以A、P、Q为顶点的三角形与△OAB相似;(3).①不存在;②M(,-6),四边形CBAN面积的最大值为:.
【详解】
(1)由题意得:A(9,0),B(0,-12)
∴OA=9,OB=12,
∴AB=15
∴S=π·()2=π;
(2)AP=2t,AQ=15-t,易求AC=12,∴0≤t≤6
若△APQ∽△AOB,则=.∴t=.
若△AQP∽△AOB,则=.∴t=>6(舍去).
∴当t=时,以A、P、Q为顶点的三角形与△OAB相似.
(3)直线AB的函数关系式为y=x-12.
设点M的横坐标为x,则M(x,x-12),N(x,x2-x-12).
若四边形OMNB为平行四边形,则MN=OB=12
∴(x-12)-(x2-x-12)=12
即x2-9x+27=0
∵△<0,
∴此方程无实数根,
∴不存在这样的点M,使得四边形OMNB恰为平行四边形;
②∵S四边形CBNA= S△ACB+ S△ABN="72+" S△ABN
∵S△AOB=54,S△OBN=6x,S△OAN=·9·=-2x2+12x+54
∴S△ABN=S△OBN+S△OAN-S△AOB=6x+(-2x2+12x+54)-54=-2x2+18x=-2(x-)2+
∴当x=时,S△ABN最大值=
此时M(,-6),S四边形CBNA最大=.
13.(2019·陕西中考真题)在平面直角坐标系中,已知抛物线L:经过点A(-3,0)和点B(0,-6),L关于原点O对称的抛物线为.
(1)求抛物线L的表达式;
(2)点P在抛物线上,且位于第一象限,过点P作PD⊥y轴,垂足为D.若△POD与△AOB相似,求符合条件的点P的坐标.
【答案】(1) y=-x2-5x-6;(2)符合条件的点P的坐标为(1,2)或(6,12)或(,)或(4,2)。
【详解】
(1)由题意,得,
解得:,
∴L:y=-x2-5x-6;
(2)∵抛物线L关于原点O对称的抛物线为,
∴点A(-3,0)、B(0,-6)在L′上的对应点分别为A′(3,0)、B′(0,6),
∴设抛物线L′的表达式y=x2+bx+6,
将A′(3,0)代入y=x2+bx+6,得b=-5,
∴抛物线L′的表达式为y=x2-5x+6,
∵A(-3,0),B(0,-6),
∴AO=3,OB=6,
设P(m,m2-5m+6)(m>0),
∵PD⊥y轴,
∴点D的坐标为(0,m2-5m+6),
∵PD=m,OD=m2-5m+6,
∵Rt△PDO与Rt△AOB相似,
∴有Rt△PDO∽Rt△AOB或Rt△ODP∽Rt△AOB两种情况,
①当Rt△PDO∽Rt△AOB时,则,即,
解得m1=1,m2=6,
∴P1(1,2),P2(6,12);
②当Rt△ODP∽Rt△AOB时,则,即,
解得m3=,m4=4,
∴P3(,),P4(4,2),
∵P1、P2、P3、P4均在第一象限,
∴符合条件的点P的坐标为(1,2)或(6,12)或(,)或(4,2).
14.(2019·湖南中考真题)如图,抛物线与x轴交于点,点,与y轴交于点C,且过点.点P、Q是抛物线上的动点.
(1)求抛物线的解析式;
(2)当点P在直线OD下方时,求面积的最大值.
(3)直线OQ与线段BC相交于点E,当与相似时,求点Q的坐标.
【答案】(1)抛物线的表达式为:;(2)有最大值,当时,其最大值为;(3)点或.
【详解】
解:(1)函数的表达式为:,将点D坐标代入上式并解得:,
故抛物线的表达式为:…①;
(2)设直线PD与y轴交于点G,设点,
将点P、D的坐标代入一次函数表达式:并解得:
直线PD的表达式为:,则,
,
∵,故有最大值,当时,其最大值为;
(3)∵,∴,
∵,故与相似时,分为两种情况:
①当时,
,,,
过点A作AH⊥BC与点H,
,解得:,
则,则,
则直线OQ的表达式为:…②,
联立①②并解得:(舍去负值),
故点
②时,
,
则直线OQ的表达式为:…③,
联立①③并解得:,
故点;
综上,点或.
15.(2018·四川中考真题)如图,抛物线y=x2+bx+c与直线y=x+3交于A,B两点,交x轴于C、D两点,连接AC、BC,已知A(0,3),C(﹣3,0).
(1)求抛物线的解析式;
(2)在抛物线对称轴l上找一点M,使|MB﹣MD|的值最大,并求出这个最大值;
(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
【答案】(1)抛物线的解析式是y=x2+x+3;(2)|MB﹣MD|取最大值为;(3)存在点P(1,6).
【详解】
(1)将A(0,3),C(﹣3,0)代入函数解析式,得
,解得,
抛物线的解析式是y=x2+x+3;
(2)由抛物线的对称性可知,点D与点C关于对称轴对称,
∴对l上任意一点有MD=MC,
联立方程组 ,
解得(不符合题意,舍),,
∴B(﹣4,1),
当点B,C,M共线时,|MB﹣MD|取最大值,即为BC的长,
过点B作BE⊥x轴于点E,
,
在Rt△BEC中,由勾股定理,得
BC=,
|MB﹣MD|取最大值为;
(3)存在点P使得以A,P,Q为顶点的三角形与△ABC相似,
在Rt△BEC中,∵BE=CE=1,
∴∠BCE=45°,
在Rt△ACO中,
∵AO=CO=3,
∴∠ACO=45°,
∴∠ACB=180°﹣45°﹣45°=90°,
过点P作PQ⊥y轴于Q点,∠PQA=90°,
设P点坐标为(x,x2+x+3)(x>0)
①当∠PAQ=∠BAC时,△PAQ∽△CAB,
∵∠PGA=∠ACB=90°,∠PAQ=∠CAB,
∴△PGA∽△BCA,
∴,即,
∴,
解得x1=1,x2=0(舍去),
∴P点的纵坐标为×12+×1+3=6,
∴P(1,6),
②当∠PAQ=∠ABC时,△PAQ∽△CBA,
∵∠PGA=∠ACB=90°,∠PAQ=∠ABC,
∴△PGA∽△ACB,
∴,
即=3,
∴,
解得x1=﹣(舍去),x2=0(舍去)
∴此时无符合条件的点P,
综上所述,存在点P(1,6).
16.(2019·湖南中考真题)如图1,△AOB的三个顶点A、O、B分别落在抛物线F1:的图象上,点A的横坐标为﹣4,点B的纵坐标为﹣2.(点A在点B的左侧)
(1)求点A、B的坐标;
(2)将△AOB绕点O逆时针旋转90°得到△A'OB',抛物线F2:经过A'、B'两点,已知点M为抛物线F2的对称轴上一定点,且点A'恰好在以OM为直径的圆上,连接OM、A'M,求△OA'M的面积;
(3)如图2,延长OB'交抛物线F2于点C,连接A'C,在坐标轴上是否存在点D,使得以A、O、D为顶点的三角形与△OA'C相似.若存在,请求出点D的坐标;若不存在,请说明理由.
【答案】(1)点A坐标为(﹣4,﹣4),点B坐标为(﹣1,﹣2);(2)S△OA'M=8;(3)点D坐标为(4,0)、(8,0)、(0,4)或(0,8)时,以A、O、D为顶点的三角形与△OA'C相似.
【详解】
(1)当x=﹣4时,,
∴点A坐标为(﹣4,﹣4),
当y=﹣2时,,
解得:x1=﹣1,x2=﹣6,
∵点A在点B的左侧,
∴点B坐标为(﹣1,﹣2);
(2)如图1,过点B作BE⊥x轴于点E,过点B'作B'G⊥x轴于点G,
∴∠BEO=∠OGB'=90°,OE=1,BE=2,
∵将△AOB绕点O逆时针旋转90°得到△A'OB',
∴OB=OB',∠BOB'=90°,
∴∠BOE+∠B'OG=∠BOE+∠OBE=90°,
∴∠B'OG=∠OBE,
在△B'OG与△OBE中
,
∴△B'OG≌△OBE(AAS),
∴OG=BE=2,B'G=OE=1,
∵点B'在第四象限,
∴B'(2,﹣1),
同理可求得:A'(4,﹣4),
∴OA=OA'=,
∵抛物线F2:y=ax2+bx+4经过点A'、B',
∴,
解得:,
∴抛物线F2解析式为:,
∴对称轴为直线:,
∵点M在直线x=6上,设M(6,m),
∴OM2=62+m2,A'M2=(6﹣4)2+(m+4)2=m2+8m+20,
∵点A'在以OM为直径的圆上,
∴∠OA'M=90°,
∴OA'2+A'M2=OM2,
∴(4)2+m2+8m+20=36+m2,
解得:m=﹣2,
∴A'M=,
∴S△OA'M=OA'•A'M=;
(3)在坐标轴上存在点D,使得以A、O、D为顶点的三角形与△OA'C相似,
∵B'(2,﹣1),
∴直线OB'解析式为y=﹣x,
,
解得:(即为点B'),,
∴C(8,﹣4),
∵A'(4,﹣4),
∴A'C∥x轴,A'C=4,
∴∠OA'C=135°,
∴∠A'OC<45°,∠A'CO<45°,
∵A(﹣4,﹣4),即直线OA与x轴夹角为45°,
∴当点D在x轴负半轴或y轴负半轴时,∠AOD=45°,此时△AOD不可能与△OA'C相似,
∴点D在x轴正半轴或y轴正半轴时,∠AOD=∠OA'C=135°(如图2、图3),
①若△AOD∽△OA'C,
则,
∴OD=A'C=4,
∴D(4,0)或(0,4);
②若△DOA∽△OA'C,
则,
∴OD=OA'=8,
∴D(8,0)或(0,8),
综上所述,点D坐标为(4,0)、(8,0)、(0,4)或(0,8)时,以A、O、D为顶点的三角形与△OA'C相似.
中考数学二轮复习解答题培优专题03 相似三角形的存在性问题(含解析): 这是一份中考数学二轮复习解答题培优专题03 相似三角形的存在性问题(含解析),共57页。
中考数学二轮专项培优专题04 几何最值存在性问题(教师版): 这是一份中考数学二轮专项培优专题04 几何最值存在性问题(教师版),共77页。
中考数学二轮专项培优专题02 等腰三角形的存在性问题(教师版): 这是一份中考数学二轮专项培优专题02 等腰三角形的存在性问题(教师版),共54页。