所属成套资源:2022-2023学年高二数学下学期期中期末必考题型归纳及过关测试(人教A版2019)
- 专题04 利用导数研究函数有解问题-2022-2023学年高二数学下学期期中期末必考题型归纳及过关测试(人教A版2019) 试卷 0 次下载
- 专题05 利用导数研究函数零点问题-2022-2023学年高二数学下学期期中期末必考题型归纳及过关测试(人教A版2019) 试卷 1 次下载
- 专题07 洛必达法则-2022-2023学年高二数学下学期期中期末必考题型归纳及过关测试(人教A版2019) 试卷 0 次下载
- 专题08 证明不等式-2022-2023学年高二数学下学期期中期末必考题型归纳及过关测试(人教A版2019) 试卷 0 次下载
- 专题09 排列组合常用技巧与归纳-2022-2023学年高二数学下学期期中期末必考题型归纳及过关测试(人教A版2019) 试卷 0 次下载
专题06 极值点偏移问题与拐点偏移问题-2022-2023学年高二数学下学期期中期末必考题型归纳及过关测试(人教A版2019)
展开
这是一份专题06 极值点偏移问题与拐点偏移问题-2022-2023学年高二数学下学期期中期末必考题型归纳及过关测试(人教A版2019),文件包含专题06极值点偏移问题与拐点偏移问题解析版docx、专题06极值点偏移问题与拐点偏移问题原卷版docx等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。
专题06 极值点偏移问题与拐点偏移问题
【考点预测】
1、极值点偏移的相关概念
所谓极值点偏移,是指对于单极值函数,由于函数极值点左右的增减速度不同,使得函数图像没有对称性.若函数在处取得极值,且函数与直线交于两点,则的中点为,而往往.如下图所示.
图1极值点不偏移图2极值点偏移
极值点偏移的定义:对于函数在区间内只有一个极值点,方程的解分别为,且,(1)若,则称函数在区间上极值点偏移;(2)若,则函数在区间上极值点左偏,简称极值点左偏;(3)若,则函数在区间上极值点右偏,简称极值点右偏.
2、对称变换
主要用来解决与两个极值点之和、积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为),即利用导函数符号的变化判断函数单调性,进而确定函数的极值点x0.
(2)构造函数,即根据极值点构造对称函数,若证,则令.
(3)判断单调性,即利用导数讨论的单调性.
(4)比较大小,即判断函数在某段区间上的正负,并得出与的大小关系.
(5)转化,即利用函数的单调性,将与的大小关系转化为与之间的关系,进而得到所证或所求.
【注意】若要证明的符号问题,还需进一步讨论与x0的大小,得出所在的单调区间,从而得出该处导数值的正负.
3、应用对数平均不等式证明极值点偏移:
①由题中等式中产生对数;
②将所得含对数的等式进行变形得到;
③利用对数平均不等式来证明相应的问题.
4、比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.
【典型例题】
例1.(2023春·河北邯郸·高二校考阶段练习)已知函数.
(1)讨论的单调性;
(2)设,为两个不相等的正数,且,证明:.
【解析】(1)的定义域为.
由得,,
当时,;当时;当时,.
故在区间内为增函数,在区间内为减函数,
(2)[方法一]:等价转化
由得,即.
由,得.
由(1)不妨设,则,从而,得,
①令,
则,
当时,,在区间内为减函数,,
从而,所以,
由(1)得即.①
令,则,
当时,,在区间内为增函数,,
从而,所以.
又由,可得,
所以.②
由①②得.
[方法二]【最优解】:变形为,所以.
令.则上式变为,
于是命题转换为证明:.
令,则有,不妨设.
由(1)知,先证.
要证:
.
令,
则,
在区间内单调递增,所以,即.
再证.
因为,所以需证.
令,
所以,故在区间内单调递增.
所以.故,即.
综合可知.
[方法三]:比值代换
证明同证法2.以下证明.
不妨设,则,
由得,,
要证,只需证,两边取对数得,
即,
即证.
记,则.
记,则,
所以,在区间内单调递减.,则,
所以在区间内单调递减.
由得,所以,
即.
[方法四]:构造函数法
由已知得,令,
不妨设,所以.
由(Ⅰ)知,,只需证.
证明同证法2.
再证明.令.
令,则.
所以,在区间内单调递增.
因为,所以,即
又因为,所以,
即.
因为,所以,即.
综上,有结论得证.
【整体点评】(2)方法一:等价转化是处理导数问题的常见方法,其中利用的对称差函数,构造函数的思想,这些都是导数问题必备的知识和技能.
方法二:等价转化是常见的数学思想,构造对称差函数是最基本的极值点偏移问题的处理策略.
方法三:比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.
方法四:构造函数之后想办法出现关于的式子,这是本方法证明不等式的关键思想所在.
例2.(2023春·山东威海·高二校考阶段练习)已知函数,
(1)讨论函数的单调性;
(2)若函数在上有两个不相等的零点,求证:.
【解析】(1),.
①当时,恒成立,单调递增;
②当时,由得,,单调递增,
由得,,单调递减.
综上:当时,单调递增;当时,在上单调递增,在上单调递减.
(2)∵在上有两个不相等的零点,,不妨设,
∴在上有两个不相等的实根,
令,,∴,
由得,,单调递减,由得,,单调递增,
,,,,
∴
要证,即证,又∵,
只要证,即证,
∵,即证
即证,即证,即证
令,,∴,
令,,则,当时,恒成立,所以在上单调递增,又,∴,∴,∴
∴在上递增,∴,∴
∴.
例3.(2023·江苏·高二专题练习)已知函数.
(1)若,求的单调区间;
(2)若在上有两个极值点、.
①求实数的取值范围;
②求证:.
【解析】(1),
令,,
因为,所以当时,,单调递减,
所以当时,,单调递增,所以,
所以当时,,当时,,
因此,的单调递减区间为,单调递增区间为;
(2)(i),
要使在上有两个极值点、,
则在上有两个不同的零点,
①时,由(1)知,,
令,故,
所以在上为增函数,所以,故,
故在上无零点,舍;
②当时,,,,
则在上单调递减,故最多只有一个零点,不合题意,舍去;
③当时,,
当时,;当时,.
所以,函数在上单调递减,在上单调递增,
所以,即要使,解得.
综上所述,的取值范围为;
(ii)由(i)知,,,
先证不等式,其中,
即证,即,
令,即证,
构造函数,则,
所以,函数在区间上单调递减,故,
由已知可得,故,
所以,则,所以,,
因此,.
例4.(2023·江苏·高二专题练习)已知定义在上的函数.
(1)若为定义域上的增函数,求实数的取值范围;
(2)若,,,为的极小值,求证:.
【解析】(1)由得:.
为上的增函数,在上恒成立,
即,
令,则,
在上单调递减,,即,
,即实数的取值范围为.
(2)当时,,则,
,在上单调递增,
又,,
,使得,且当时,;当时,;
在上单调递减,在上单调递增,则为的极小值.
设,,,,
设,
,.
,,又,,
在上单调递增,
,
,在上单调递增,
,
,,,
又在上单调递减,,即.
例5.(2023·江苏·高二专题练习)已知函数,.
(1)若在定义域内是减函数,求的最小值;
(2)若有两个极值点分别是,,证明:.
【解析】(1)定义域为,,
在定义域内是减函数,在上恒成立,
即,,
令,则,令,解得:,
当时,;当时,;
在上单调递增,在上单调递减,
,,解得:,
的最小值为.
(2)由(1)知:若有两个极值点,则;
令,则,
令,解得:,
当时,;当时,;
在上单调递增,在上单调递减,
不妨设,则;
令,
则,
在上单调递增,,
,即,
又,,
,,
又,在上单调递增,
,即.
例6.(2023·全国·模拟预测)已知函数.
(1)求函数的单调区间与极值.
(2)若,求证:.
【解析】(1)定义域为,,
令,解得:或,
当时,;当时,;
的单调递增区间为和,单调递减区间为;
的极大值为,极小值为.
(2)由(1)知:,,.
令,,
则;
令,则;
令,则,
在上恒成立,在上单调递增,
,
在上恒成立,在上单调递增,,
在上恒成立,在上单调递增,,
对任意恒成立.
,,又,,
在上单调递增,,,即;
令,,
则;
在上单调递增,,
在上恒成立,在上单调递增,
,对任意恒成立.
,.又,,
在上单调递增,且,,;
由得:,,.
例7.(2023·陕西安康·统考二模)已知函数,(e为自然对数的底数)
(1)当时,恰好存在一条过原点的直线与,都相切,求b的值;
(2)若,方程有两个根,(),求证:.
【解析】(1)当时,,设直线与的切点为,则切线斜率为,切线方程为.因即在图像上,也在切线上,则,故切线斜率为1,则切线方程为.
又,,设直线与的切点为,则切线斜率为,切线方程为.因即在图像上,也在切线上,则,又切线斜率为1,则
;
(2)当时,,
则由题可得有两个根,
令,则可得方程有两个根,
则.令,,则,
.注意到,
则构造函数,.
因,则在上单调递增,得
.
故命题得证.
例8.(2023·辽宁阜新·校考模拟预测)已知函数
(1)若时,求的最值;
(2)若函数,且为的两个极值点,证明:
【解析】(1),,,,
所以当单调递减;单调递增.
所以在处有唯一极小值,即最小值,为,无极大值,即无最大值.
(2)证明:,令
因为,所以单调递减;单调递增,所以.
因为为的两个极值点,所以,且.
所以在、,,单调递增;在,,单调递减;
因为,则,则,
设,则,
所以在单调递减,所以,
所以,因为在,单调递减,所以.
所以要证,只需证,即,
令,
令.
所以在单调递增,,
所以在单调递增,,
所以,即.
【过关测试】
1.(2023·全国·高二专题练习)已知函数.
(1)若函数有两个零点,求的取值范围;
(2)设是函数的两个极值点,证明:.
【解析】(1),
该方程有两个不等实根,由,
所以直线与函数的图象有两个不同交点,
由,
当时,单调递减,
当时,单调递增,因此,
当时,,当,,
如下图所示:
所以要想有两个不同交点,只需,即的取值范围为;
(2)因为是函数的两个极值点,
所以,由(1)可知:,不妨设,
要证明,只需证明,显然,
由(2)可知:当时,单调递增,所以只需证明,
而,所以证明即可,
即证明函数在时恒成立,
由,
显然当时,,因此函数单调递减,
所以当时,有,所以当时,恒成立,因此命题得以证明.
2.(2023春·重庆九龙坡·高二重庆市杨家坪中学校考阶段练习)已知函数.
(1)求函数的单调区间和最大值;
(2)设函数有两个零点,证明:.
【解析】(1)函数的定义域是.
当时,恒成立,故在上单调递增,无最大值;
当时,令,得;令,得,
所以的单调递增区间为,单调递减区间为,
.
(2),
因为为的两个零点,
所以,不妨设.
因为,所以在上单调递减,在上单调递增,
所以.
又证明等价于证明,
又因为在上单调递增,
因此证明原不等式等价于证明,即要证明,
即要证明,
即恒成立.
令,
则,
所以在上为减函数,
所以,
即在时恒成立,
因此不等式恒成立,
即.
3.(2023秋·福建福州·高二福州三中校考期末)已知函数().
(1)试讨论函数的单调性;
(2)若函数有两个零点,(),求证:.
【解析】(1)由已知,的定义域为,,
①当时,,恒成立,
∴此时在区间上单调递增;
②当时,令,解得,
当时,,在区间上单调递增,
当时,,在区间上单调递减,
综上所述,当时,在区间上单调递增;
当时,在区间上单调递增,在区间上单调递减.
(2)若函数有两个零点,(),
则由(1)知,,在区间上单调递增,在区间上单调递减,
且,,,
当时,,当时,,(*)
∵,∴,∴,
又∵,∴,
∴只需证明,即有.
下面证明,
设
,,
设,则,
令,解得,
当时,,在区间单调递减,
当时,,在区间单调递增,
∴,在区间上单调递增,
又∵,∴,
即,
∴由(*)知,,∴,即.
又∵,,
∴,原命题得证.
4.(2023秋·安徽阜阳·高二安徽省颍上第一中学校考期末)已知函数().
(1)讨论函数的单调性;
(2)若方程有两个不相等的实数根,证明:.
【解析】(1)函数的定义域为:
当时,,的单调递增区间为
当时,当时,,的单调递增区间为;
当时,,的单调递减区间为;
综上所述,当时,的单调递增区间为,无单调递减区间,
当时,的单调递增区间为,单调递减区间为.
(2)因为方程存在两个不同的实数解,
因此不为单调函数,所以,
令,则的单调递减区间为,单调递增区间为,最小值,
,令,,
,
在上单调递增,且,
当时,,
,,
,
的单调递增区间为,、
,.
5.(2023·江苏·高二专题练习)已知函数.
(1)若有两个零点,的取值范围;
(2)若方程有两个实根、,且,证明:.
【解析】(1)函数的定义域为.
当时,函数无零点,不合乎题意,所以,,
由可得,
构造函数,其中,所以,直线与函数的图象有两个交点,
,由可得,列表如下:
增
极大值
减
所以,函数的极大值为,如下图所示:
且当时,,
由图可知,当时,即当时,直线与函数的图象有两个交点,
故实数的取值范围是.
(2)证明:因为,则,
令,其中,则有,
,所以,函数在上单调递增,
因为方程有两个实根、,令,,
则关于的方程也有两个实根、,且,
要证,即证,即证,即证,
由已知,所以,,整理可得,
不妨设,即证,即证,
令,即证,其中,
构造函数,其中,
,所以,函数在上单调递增,
当时,,故原不等式成立.
6.(2023秋·辽宁丹东·高三统考期末)已知函数.
(1)证明:若,则;
(2)证明:若有两个零点,,则.
【解析】(1)因为定义域为,所以等价于.
设,则,
当时,,当时,,
所以在单调递减,在单调递增,
故.
因为,所以,于是.
(2)不妨设,由(1)可知,也是的两个零点,且,,于是,由于在单调递减,故等价于.
而,故等价于.①
设,则①式为.
因为.
设,
当时,,故在单调递增,
所以,从而,因此在单调递增.
又,故,故,于是.
7.(2023·河南开封·开封高中校考模拟预测)已知函数.
(1)讨论的单调性;
(2)若有两个零点,证明:.
【解析】(1)函数的定义域为,
时,恒成立,所以在上单调递减;
时,令得,
当时,;当时,,
所以在上单调递减,在上单调递增.
(2)证明:时,由(1)知至多有一个零点.
时,由(1)知当时,取得最小值,最小值为.
①当时,由于,故只有一个零点;
②当时,即,故没有零点;
③当时,即,
又,
由(1)知在上有一个零点.
又,
由(1)知在有一个零点,
所以在上有两个零点,的取值范围为
不妨设,则,且,
令
,
则,
由于(且仅当等号成立,
所以当时,在单调递减,又,
所以,即,
又,所以,
又由于,且在上单调递增,
所以即.
8.(2023秋·江苏南通·高三统考期末)已知函数,且
(1)求实数的值
(2)若关于的方程有个不同的实数根,,求证:.
【解析】(1)因为,所以
设,则.
当时,,所以单调递增,
所以,不满足题意.
当时,在区间上单调递增,
所以,不满足题意.
当时,在区间上单调递减,
所以,不满足题意.
当时,在区间上单调递减,
在区间上单调递增,所以,
所以,所以
综上可知:.
(2)因为,所以,
所以在区间上单调递减,在区间上单调递增,
所以.
要证,即证.
因为,,所以即证,
因为,所以即证
设,
则,
所以在区间上单调递减,所以.
综上可知,原命题得证.
9.(2023·全国·高三专题练习)已知函数.
(1)讨论的单调性;
(2)若时,都有,求实数的取值范围;
(3)若有不相等的两个正实数满足,求证:.
【解析】(1)函数的定义域为,.
①当时,令,即,解得:.
令,解得:;令,解得:;
所以函数在上单调递增,在上单调递减.
②当时,则,所以函数在上单调递增.
综上所述:当时,函数在上单调递增,在上单调递减.
当时,函数在上单调递增.
(2)当时,都有,即,
亦即对恒成立.
令,只需.
.
令,则,所以当时,,
所以在上单增,所以,
所以当时,.
所以,所以在上单减,
所以.
所以.
综上所述:实数的取值范围为.
(3)可化为:.
令,上式即为.
由(1)可知:在上单调递增,在上单调递减,
则为的两根,其中.
不妨设,要证,只需,即,
只需证.
令.
则
当时,;当时,.
由零点存在定理可得:存在,使得.
当时,,单增;当时,,单减;
又,所以.
.
因为, ,
所以.
所以恒成立.
所以.
所以.
所以
即证.
10.(2023·全国·高三专题练习)已知函数,.
(1)若,求的取值范围;
(2)证明:若存在,,使得,则.
【解析】(1),,令,解得,
所以当时,,在上单调递增;
当时,,在单调递减,
所以,要使,则有,而,故,
所以的取值范围为.
(2)证明:当时,由(1)知,当时,单调递增;
当时,单调递减,
设,所以,,
①若,则,成立;
②若,先证,此时,
要证,即证,即,,
令,,
,
所以在(1,2)上单调递增,所以,
即,,所以,
因为,,所以,
即.
11.(2023·全国·高三专题练习)已知,其极小值为-4.
(1)求的值;
(2)若关于的方程在上有两个不相等的实数根,,求证:.
【解析】(1)因为,所以.
当时,,
所以单调递增,没有极值,舍去.
当时,在区间上,,单调递增,
在区间上,,单调递减,
在区间上,,单调递增,
所以当时,的极小值为,舍去
当时,在区间上,,单调递增,
在区间上,,单调递减,
在区间上,,单调递增,
所以当时,的极小值为.
所以.
(2)由(1)知,在区间上,,单调递增,
在区间上,,单调递减,
在区间上,,单调递增,
所以不妨设.
下面先证.
即证,因为,所以,
又因为区间上,单调递减,
只要证,又因为,
只要证,只要证.
设,
则,
所以单调递增,
所以,所以.
下面证.
设,因为,
在区间上,;在区间上,.
设,,因为,
所以,所以.
设,,因为,
所以,所以.
因为,所以,
所以.
12.(2023秋·黑龙江哈尔滨·高三哈师大附中校考期末)已知函数有两个极值点,.
(1)求实数的取值范围;
(2)求证:.
【解析】(1)由于,则.
设,则,令,解得.
所以当时,;当时,,所以
①当时,,所以函数在上单调递增,没有极值点.
②当时,,,
此时,有两个零点、,不妨设,则,
所以函数有2个极值点时,的范围时.
(2)由(1)知,、为的两个实数根,不妨设,则,
在上单调递减.
下面先证,只需证.
由于,所以,
所以.
设,则,
所以在上单调递减,所以,,
所以.
由于函数在上单调递减,所以.
要证,只需证,即证.
设函数,则.
设,则,
所以在上单调递增,,即.
所以在上单调递增,.
故当时,,则,
所以,即
13.(2023·全国·高三专题练习)已知函数
(1)求函数单调区间;
(2)设函数,若是函数的两个零点,
①求的取值范围;
②求证:.
【解析】(1)定义域为,,
当时,;当时,;
的单调递增区间为;单调递减区间为.
(2)①若是的两个不同零点,则与在上有两个不同交点;
由(1)知:,又,
在的图象如下图所示,
由图象可知:,,即的取值范围为.
②不妨设,由①知:,
,,
在上单调递增,在上单调递减;
设,则,
在上单调递减,,,
又,,又,;
,,在上单调递增,
,则.
14.(2023·全国·高三专题练习)已知函数,,.
(1)若在x=0处的切线与在x=1处的切线相同,求实数a的值;
(2)令,直线y=m与函数的图象有两个不同的交点,交点横坐标分别为,,证明:.
【解析】(1),.,,1-a=a-1,a=1.
检验a=1时两个函数切线方程都是y=1.
(2),x>0,令,则,
∴在递增,,,
因为函数连续不间断,所以存在唯一实数,
,,从而在递减,递增.
不妨设,则,
当时,.
当,则,,在递增,
,
令,,
令,,
令,,
,在递减,
因为,,,在递增,
,所以在递减,
所以,
即,即,
因为,,在递增,
所以,所以.综上可得,.
15.(2023·全国·高三专题练习)已知函数.
(1)求在上的最小值.
(2)设,若有两个零点,证明:.
【解析】(1),
令,,
则当时,恒成立,在上单调递增,;
又当时,,,在上单调递增,
.
(2)由题意得:,则,
当时,;当时,;
在上单调递减,在上单调递增,
有两个零点,,;
要证,只需证,
又,,在上单调递减,只需证,
又,只需证,
即证:;
设,则,
在上单调递增,,
;
由(1)知:,成立,
综上所述:.
16.(2023·全国·高三专题练习)已知函数.
(1)证明:.
(2)若函数,若存在使,证明:.
【解析】(1)令,,,
令,解得:;令,解得:,
∴在递增,在递减,则,
∴恒成立,即.
(2)∵,,∴,
令,解得:;令,解得:;
∴在递增,在递减.
又∵,,,,且,.
要证,即证.
∵,∴,
又∵,∴只证即可.
令,,
恒成立,
∴在单调递增.
又∵,∴,∴,
即,∴.
17.(2023秋·江苏南京·高三南京市中华中学校考阶段练习)已知函数
(1)讨论f(x)的单调性;
(2)若,且,证明: .
【解析】(1)
当时,, , 所以单调递增;, , 所以单调递减;
当时,, 所以单调递减;, 所以单调递增;
(2)证明:
, ∴ ,
即当时,
由(1)可知,此时是的极大值点,因此不妨令
要证,即证:
①当时,成立;
②当时
先证
此时
要证,即证:,即,即
即: ①
令 ,
∴
∴在区间上单调递增
∴,∴①式得证.
∴
∵,
∴ ∴ ∴
18.(2023·全国·高三专题练习)已知函数.
(1)若时,,求的取值范围;
(2)当时,方程有两个不相等的实数根,证明:.
【解析】(1)∵, ,∴,
设 ,,
当时,令得,当时,,单调递减;当时,,单调递增,
∴,与已知矛盾.
当时,,∴在上单调递增,∴,满足条件;
综上,取值范围是.
(2)证明:当时,,当,,当,,
则在区间上单调递增,在区间上单调递减,
不妨设,则,要证,只需证,
∵在区间上单调递增,∴只需证,
∵,∴只需证.
设,则,
∴在区间上单调递增,∴,∴,即成立,
∴.
19.(2023·全国·高三专题练习)已知函数
(1)若对任意的,都有恒成立,求实数的取值范围;
(2)设是两个不相等的实数,且.求证:
【解析】(1)当时,,
因为,所以,即,不符合题意;
当时,,
当时,,当时,,
所以在上单调递增,在上单调递减.
所以.
由恒成立可知,所以.
又因为,所以的取值范围为.
(2)因为,所以,即.
令,由题意可知,存在不相等的两个实数,,使得.
由(1)可知在区间上单调递增,在区间上单调递减.
不妨设,则.
设,
则,
所以在上单调递增,
所以,即在区间上恒成立.
因为,所以.
因为,所以.
又因为,,且在区间上单调递增,
所以,即.
相关试卷
这是一份2024年高考数学重难点突破讲义:微切口6 极值点偏移和拐点偏移问题,共6页。
这是一份能力拓展05 极值点偏移问题与拐点偏移问题(7种考向),文件包含能力拓展05极值点偏移问题与拐点偏移问题7种考向解析版docx、能力拓展05极值点偏移问题与拐点偏移问题7种考向原卷版docx等2份试卷配套教学资源,其中试卷共93页, 欢迎下载使用。
这是一份专题05 极值点偏移问题与拐点偏移问题 -新高考数学大一轮复习讲义之方法技巧与题型全归纳(新高考专用),文件包含专题05极值点偏移问题与拐点偏移问题解析版docx、专题05极值点偏移问题与拐点偏移问题原卷版docx等2份试卷配套教学资源,其中试卷共61页, 欢迎下载使用。