所属成套资源:中考数学二轮复习专题训练题型 (教师版)
中考数学二轮复习专题训练题型07 动态问题试题(教师版)
展开
这是一份中考数学二轮复习专题训练题型07 动态问题试题(教师版),共49页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
题型07 动态问题试题
一、单选题
1.如图,矩形中,,,为的中点,为上一动点,为中点,连接,则的最小值是( )
A.2 B.4 C. D.
【答案】D
【分析】根据中位线定理可得出点P的运动轨迹是线段P1P2,再根据垂线段最短可得当BP⊥P1P2时,PB取得最小值;由矩形的性质以及已知的数据即可知BP1⊥P1P2,故BP的最小值为BP1的长,由勾股定理求解即可.
【详解】解:点P为DF的中点,
当F运动过程中,点P的运动轨迹是线段P1P2
因此可得当C点和F点重合时,BP1⊥P1P2时使PB最小为BP1.
当C和F重合时,P1点是CD的中点
故选D.
【点睛】本题主要考查矩形中的动点问题,关键在于问题的转化,要使PB最小,就必须使得DF最长.
2.如图,在中,,,.点P是边AC上一动点,过点P作交BC于点Q,D为线段PQ的中点,当BD平分时,AP的长度为( )
A. B. C. D.
【答案】B
【分析】根据勾股定理求出AC,根据角平分线的定义、平行线的性质得到,得到,根据相似三角形的性质列出比例式,计算即可.
【详解】解:,,,
,
,
,又,
,
,
,
,
,
,即,
解得,,
,
故选B.
【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.
3.如图是函数的图象,直线轴且过点,将该函数在直线l上方的图象沿直线l向下翻折,在直线1下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m的取值范围是( )
A. B. C. D.或
【答案】C
【分析】找到最大值和最小值差刚好等于5的时刻,则M的范围可知.
【详解】解:如图1所示,当t等于0时,
∵,
∴顶点坐标为,
当时,,
∴,
当时,,
∴,
∴当时,
,
∴此时最大值为0,最小值为;
如图2所示,当时,
此时最小值为,最大值为1.
综上所述:,
故选:C.
【点睛】此题考查了二次函数与几何图形结合的问题,找到最大值和最小值的差刚好为5的m的值为解题关键.
4.矩形OABC在平面直角坐标系中的位置如图所示,已知,点A在x轴上,点C在y轴上,P是对角线OB上一动点(不与原点重合),连接PC,过点P作,交x轴于点D.下列结论:①;②当点D运动到OA的中点处时,;③在运动过程中,是一个定值;④当△ODP为等腰三角形时,点D的坐标为.其中正确结论的个数是( )
A.1个 B.2个 C.3个 D.4个
【答案】D
【分析】①根据矩形的性质即可得到;故①正确;
②由点D为OA的中点,得到,根据勾股定理即可得到,故②正确;
③如图,过点P作于F,FP的延长线交BC于E,,则,根据三角函数的定义得到,求得,根据相似三角形的性质得到,根据三角函数的定义得到,故③正确;
④当为等腰三角形时,Ⅰ、,解直角三角形得到,
Ⅱ、OP=OD,根据等腰三角形的性质和四边形的内角和得到,故不合题意舍去;
Ⅲ、,根据等腰三角形的性质和四边形的内角和得到,故不合题意舍去;于是得到当为等腰三角形时,点D的坐标为.故④正确.
【详解】解:①∵四边形OABC是矩形,,
;故①正确;
②∵点D为OA的中点,
,
,故②正确;
③如图,过点P作 A于F,FP的延长线交BC于E,
,四边形OFEC是矩形,
,
设,则,
在中,,
,
,
,
,
,
,
,
,
,
,
,
,
,故③正确;
④,四边形OABC是矩形,
,
,
,
当为等腰三角形时,
Ⅰ、
Ⅱ、
,
,故不合题意舍去;
Ⅲ、,
,
故不合题意舍去,
∴当为等腰三角形时,点D的坐标为.故④正确,
故选:D.
【点睛】考查了矩形的性质,锐角三角函数的定义,相似三角形的判定和性质,勾股定理,等腰三角形的性质,构造出相似三角形表示出CP和PD是解本题的关键.
5.如图,在中,,,点在边上,且,点为的中点,点为边上的动点,当点在上移动时,使四边形周长最小的点的坐标为( )
A. B. C. D.
【答案】C
【分析】根据已知条件得到AB=OB=4,∠AOB=45°,求得BC=3,OD=BD=2,得到D(0,2),C(4,3),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,2),求得直线EC的解析式为y=x+2,解方程组即可得到结论.
【详解】∵在Rt△ABO中,∠OBA=90°,A(4,4),
∴AB=OB=4,∠AOB=45°,
∵,点D为OB的中点,
∴BC=3,OD=BD=2,
∴D(0,2),C(4,3),
作D关于直线OA的对称点E,连接EC交OA于P,
则此时,四边形PDBC周长最小,E(0,2),
∵直线OA 的解析式为y=x,
设直线EC的解析式为y=kx+b,
∴,
解得:,
∴直线EC的解析式为y=x+2,
解得,,
∴P(,),
故选C.
【点睛】本题考查了轴对称-最短路线问题,等腰直角三角形的性质,正确的找到P点的位置是解题的关键.
6.如图,菱形的顶点、在轴上(在的左侧),顶点、在轴上方,对角线的长是,点为的中点,点在菱形的边上运动.当点到所在直线的距离取得最大值时,点恰好落在的中点处,则菱形的边长等于( )
A. B. C. D.
【答案】A
【分析】如图1中,当点P是AB的中点时,作FG⊥PE于G,连接EF.首先说明点G与点F重合时,FG的值最大,如图2中,当点G与点E重合时,连接AC交BD于H,PE交BD于J.设BC=2a.利用相似三角形的性质构建方程求解即可.
【详解】如图1中,当点P是AB的中点时,作FG⊥PE于G,连接EF.
∵E(-2,0),F(0,6),
∴OE=2,OF=6,
∴EF=,
∵∠FGE=90°,
∴FG≤EF,
∴当点G与E重合时,FG的值最大.
如图2中,当点G与点E重合时,连接AC交BD于H,PE交BD于J.设BC=2a.
∵PA=PB,BE=EC=a,
∴PE∥AC,BJ=JH,
∵四边形ABCD是菱形,
∴AC⊥BD,BH=DH=,BJ=,
∴PE⊥BD,
∵∠BJE=∠EOF=∠PEF=90°,
∴∠EBJ=∠FEO,
∴△BJE∽△EOF,
∴,
∴,
∴a=,
∴BC=2a=,
故选A.
【点睛】本题考查菱形的性质,坐标与图形的性质,相似三角形的判定和性质,垂线段最短等知识,解题的关键是理解题意,学会添加常用辅助线,构造相似三角形解决问题,属于中考选择题中的压轴题.
7.如图,抛物线与轴交于、两点,是以点(0,3)为圆心,2为半径的圆上的动点,是线段的中点,连结.则线段的最大值是( )
A. B. C. D.
【答案】C
【分析】根据抛物线解析式可求得点A(-4,0),B(4,0),故O点为AB的中点,又Q是AP上的中点可知OQ=BP,故OQ最大即为BP最大,即连接BC并延长BC交圆于点P时BP最大,进而即可求得OQ的最大值.
【详解】∵抛物线与轴交于、两点
∴A(-4,0),B(4,0),即OA=4.
在直角三角形COB中
BC=
∵Q是AP上的中点,O是AB的中点
∴OQ为△ABP中位线,即OQ=BP
又∵P在圆C上,且半径为2,
∴当B、C、P共线时BP最大,即OQ最大
此时BP=BC+CP=7
OQ=BP=.
【点睛】本题考查了勾股定理求长度,二次函数解析式求点的坐标及线段长度,中位线,与圆相离的点到圆上最长的距离,解本题的关键是将求OQ最大转化为求BP最长时的情况.
8.如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则的最小值是( )
A. B. C. D.10
【答案】B
【分析】如图,作DH⊥AB于H,CM⊥AB于M.由tanA==2,设AE=a,BE=2a,利用勾股定理构建方程求出a,再证明DH=BD,推出CD+BD=CD+DH,由垂线段最短即可解决问题.
【详解】如图,作DH⊥AB于H,CM⊥AB于M.
∵BE⊥AC,
∴∠AEB=90°,
∵tanA==2,设AE=a,BE=2a,
则有:100=a2+4a2,
∴a2=20,
∴a=2或-2(舍弃),
∴BE=2a=4,
∵AB=AC,BE⊥AC,CM⊥AB,
∴CM=BE=4(等腰三角形两腰上的高相等))
∵∠DBH=∠ABE,∠BHD=∠BEA,
∴,
∴DH=BD,
∴CD+BD=CD+DH,
∴CD+DH≥CM,
∴CD+BD≥4,
∴CD+BD的最小值为4.
故选B.
【点睛】本题考查解直角三角形,等腰三角形的性质,垂线段最短等知识,解题的关键是学会添加常用辅助线,用转化的思想思考问题,属于中考常考题型.
9.如图,已知 两点的坐标分别为,点分别是直线和x轴上的动点,,点是线段的中点,连接交轴于点;当⊿面积取得最小值时,的值是( )
A. B. C. D.
【答案】B
【分析】如图,设直线x=-5交x轴于K.由题意KD=CF=5,推出点D的运动轨迹是以K为圆心,5为半径的圆,推出当直线AD与⊙K相切时,△ABE的面积最小,作EH⊥AB于H.求出EH,AH即可解决问题.
【详解】如图,设直线x=-5交x轴于K.由题意KD=CF=5,
∴点D的运动轨迹是以K为圆心,5为半径的圆,
∴当直线AD与⊙K相切时,△ABE的面积最小,
∵AD是切线,点D是切点,
∴AD⊥KD,
∵AK=13,DK=5,
∴AD=12,
∵tan∠EAO=,
∴,
∴OE=,
∴AE=,
作EH⊥AB于H.
∵S△ABE=•AB•EH=S△AOB-S△AOE,
∴EH=,
∴,
∴,
故选B.
【点睛】本题考查解直角三角形,坐标与图形的性质,直线与圆的位置关系,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题.
10.如图,是的直径,、是弧(异于、)上两点,是弧上一动点,的角平分线交于点,的平分线交于点.当点从点运动到点时,则、两点的运动路径长的比是( )
A. B. C. D.
【答案】A
【分析】连接BE,由题意可得点E是△ABC的内心,由此可得∠AEB=135°,为定值,确定出点E的运动轨迹是是弓形AB上的圆弧,此圆弧所在圆的圆心在AB的中垂线上,根据题意过圆心O作直径CD,则CD⊥AB,在CD的延长线上,作DF=DA,则可判定A、E、B、F四点共圆,继而得出DE=DA=DF,点D为弓形AB所在圆的圆心,设⊙O的半径为R,求出点C的运动路径长为,DA=R,进而求出点E的运动路径为弧AEB,弧长为,即可求得答案.
【详解】连结BE,
∵点E是∠ACB与∠CAB的交点,
∴点E是△ABC的内心,
∴BE平分∠ABC,
∵AB为直径,
∴∠ACB=90°,
∴∠AEB=180°-(∠CAB+∠CBA)=135°,为定值,,
∴点E的轨迹是弓形AB上的圆弧,
∴此圆弧的圆心一定在弦AB的中垂线上,
∵,
∴AD=BD,
如下图,过圆心O作直径CD,则CD⊥AB,
∠BDO=∠ADO=45°,
在CD的延长线上,作DF=DA,
则∠AFB=45°,
即∠AFB+∠AEB=180°,
∴A、E、B、F四点共圆,
∴∠DAE=∠DEA=67.5°,
∴DE=DA=DF,
∴点D为弓形AB所在圆的圆心,
设⊙O的半径为R,
则点C的运动路径长为:,
DA=R,
点E的运动路径为弧AEB,弧长为:,
C、E两点的运动路径长比为:,
故选A.
【点睛】本题考查了点的运动路径,涉及了三角形的内心,圆周角定理,四点共圆,弧长公式等,综合性较强,正确分析出点E运动的路径是解题的关键.
二、填空题
11.如图,矩形硬纸片ABCD的顶点A在轴的正半轴及原点上滑动,顶点B在轴的正半轴及原点上滑动,点E为AB的中点,AB=24,BC=5,给出下列结论:①点A从点O出发,到点B运动至点O为止,点E经过的路径长为12π;②△OAB的面积的最大值为144;③当OD最大时,点D的坐标为,其中正确的结论是_________(填写序号).
【答案】②③
【分析】①由条件可知AB=24,则AB的中点E的运动轨迹是圆弧,最后根据弧长公式即可计算出点E所经过的路径长;②当△OAB的面积最大时,因为AB=24,所以△OAB为等腰直角三角形,即OA=OB,可求出最大面积为144;③当O、E、D三点共线时,OD最大,过点D作DF⊥y轴于点F,可求出OD=25,证明△DFA∽△AOB和△DFO∽△BOA,可求出DF长,则D点坐标可求出.
【详解】解:∵点E为AB的中点,AB=24,
∴AB的中点E的运动轨迹是以点O为圆心,12为半径的一段圆弧,
∵∠AOB=90°,
∴点E经过的路径长为,故①错误;
当△OAB的面积最大时,因为AB=24,所以△OAB为等腰直角三角形,即OA=OB,
∵E为AB的中点,
,故②正确;
如图,当O、E、D三点共线时,OD最大,过点D作DF⊥y轴于点F,
∴OD=DE+OE=13+12=25,
设DF=x,
∵四边形ABCD是矩形,
∴∠DAB=90°,
∴∠DFA=∠AOB,
∴∠DAF=∠ABO,
∴△DFA∽△AOB
∵E为AB的中点,∠AOB=90°,
∴AE=OE,
∴∠AOE=∠OAE,
∴△DFO∽△BOA,
解得舍去,
,故③正确.
故答案为②③.
【点睛】本题考查四边形综合题、直角形的性质、矩形的性质、相似三角形的判定和性质等知识.解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.
12.如图,在边长为的菱形中,,将沿射线的方向平移得到,分别连接,,则的最小值为____.
【答案】
【分析】过C点作BD的平行线,以为对称轴作B点的对称点,连接交直线于点,当三点共线时取最小值,再根据勾股定理即可求解.
【详解】如图,过C点作BD的平行线,以为对称轴作B点的对称点,连接交直线于点
根据平移和对称可知,当三点共线时取最小值,即,又,
根据勾股定理得,,故答案为
【点睛】此题主要考查菱形的性质,解题的关键是熟知平移的性质及勾股定理的应用.
13.如图,在矩形ABCD中,AB=4,∠DCA=30°,点F是对角线AC上的一个动点,连接DF,以DF为斜边作∠DFE=30°的直角三角形DEF,使点E和点A位于DF两侧,点F从点A到点C的运动过程中,点E的运动路径长是________.
【答案】.
【分析】当F与A点重合时和F与C重合时,根据E的位置,可知E的运动路径是EE'的长;由已知条件可以推导出△DEE'是直角三角形,且∠DEE'=30°,在Rt△ADE'中,求出DE'=即可求解.
【详解】解:如图
E的运动路径是EE'的长;
∵AB=4,∠DCA=30°,
∴BC=,
当F与A点重合时,
在Rt△ADE'中,AD=,∠DAE'=30°,∠ADE'=60°,
∴DE'=,∠CDE'=30°,
当F与C重合时,∠EDC=60°,
∴∠EDE'=90°,∠DEE'=30°,
在Rt△DEE'中,EE'=;
故答案为.
【点睛】本题考查点的轨迹;能够根据E点的运动情况,分析出E点的运动轨迹是线段,在30度角的直角三角形中求解是关键.
14.如图,点是双曲线:()上的一点,过点作轴的垂线交直线:于点,连结,.当点在曲线上运动,且点在的上方时,△面积的最大值是______.
【答案】3
【分析】令PQ与x轴的交点为E,根据双曲线的解析式可求得点A、B的坐标,由于点P在双曲线上,由双曲线解析式中k的几何意义可知△OPE的面积恒为2,故当△OEQ面积最大时△的面积最大.设Q(a,)则S△OEQ= ×a×()==,可知当a=2时S△OEQ最大为1,即当Q为AB中点时△OEQ为1,则求得△面积的最大值是是3.
【详解】
∵交x轴为B点,交y轴于点A,
∴A(0,-2),B(4,0)
即OB=4,OA=2
令PQ与x轴的交点为E
∵P在曲线C上
∴△OPE的面积恒为2
∴当△OEQ面积最大时△的面积最大
设Q(a, )
则S△OEQ= ×a×()==
当a=2时S△OEQ最大为1
即当Q为AB中点时△OEQ为1
故△面积的最大值是是3.
【点睛】本题考查了反比例函数与一次函数几何图形面积问题,二次函数求最大值,解本题的关键是掌握反比例函数中k的几何意义,并且建立二次函数模型求最大值.
15.如图,正方形ABCD中,,点P在BC上运动(不与B、C重合),过点P作,交CD于点Q,则CQ的最大值为_______.
【答案】4
【分析】先证明,得到与CQ有关的比例式,设,则,代入解析式,得到y与x的二次函数式,根据二次函数的性质可求最值.
【详解】解:
又
设,则.
,化简得,
整理得,
所以当时,y有最大值为4.
故答案为4.
【点睛】考查了正方形的性质、相似三角形的判定和性质,以及二次函数最值问题,几何最值用二次函数最值求解考查了树形结合思想.
16.如图,在平面直角坐标中,一次函数y=﹣4x+4的图象与x轴、y轴分别交于A、B两点.正方形ABCD的顶点C、D在第一象限,顶点D在反比例函数(k≠0)的图象上.若正方形ABCD向左平移n个单位后,顶点C恰好落在反比例函数的图象上,则n的值是_____.
【答案】3.
【分析】过点D作DE⊥x轴过点C作CF⊥y轴,可证△ABO≌△DAE(AAS),△CBF≌△BAO(AAS),则可求D(5,1),C(4,5),确定函数解析式,C向左移动n个单位后为(4﹣n,5),进而求n的值.
【详解】过点D作DE⊥x轴,过点C作CF⊥y轴,
∵AB⊥AD,
∴∠BAO=∠DAE,
∵AB=AD,∠BOA=∠DEA,
∴△ABO≌△DAE(AAS),
∴AE=BO,DE=OA,
y=﹣4x+4,当x=0时,y=4,
当y=0时,0=-4x+4,x=1,
∴A(1,0),B(0,4),
∴OA=1,OB=4,
∴OE=OA+AE=5,
∴D(5,1),
∵顶点D在反比例函数上,
∴k=5,
∴,
易证△CBF≌△BAO(AAS),
∴CF=4,BF=1,
∴C(4,5),
∵C向左移动n个单位后为(4﹣n,5),
∴5(4﹣n)=5,
∴n=3,
故答案为:3.
【点睛】本题考查了反比例函数图象上点的坐标特征,正方形的性质,全等三角形的判定与性质,图形的平移等,综合性较强,正确添加常用辅助线是解题的关键.
17.如图1,在四边形中,∥,,直线.当直线沿射线方向,从点开始向右平移时,直线与四边形的边分别相交于点、.设直线向右平移的距离为,线段的长为,且与的函数关系如图2所示,则四边形的周长是_____.
【答案】
【分析】根据图1直线l的平移过程分为三段,当F与A重合之前,x与y都不断增大,当当F与A重合之后到点E与点C重合之前,x增加y不变,E与点C重合后继续运动至F与D重合x增加y减小.结合图2可知BC=5,AD=7-4=3,由且∠B=30°可知AB=,当F与A重合时,把CD平移到E点位置可得三角形AED′为正三角形,可得CD=2,进而可求得周长.
【详解】由题意和图像易知BC=5,AD=7-4=3
当BE=4时(即F与A重合),EF=2
又∵且∠B=30°
∴AB=,
∵当F与A重合时,把CD平移到E点位置可得三角形AED′为正三角形
∴CD=2
∴AB+BC+CD+AD=+5+2+3=10+
故答案时.
【点睛】本题考查了30°所对的直角边是斜边的一半,对四边形中动点问题几何图像的理解,解本题的关键是清楚掌握直线l平移的距离为,线段的长为的图像和直线运动的过程的联系,找到对应线段长度.
18.如图,在矩形中,,点是边上的一个动点,连接,作点关于直线的对称点,连接,设的中点为,当点从点出发,沿边运动到点时停止运动,点的运动路径长为_____.
【答案】
【分析】如图,连接BA1,取BC使得中点O,连接OQ,BD.利用三角形的中位线定理证明=定值,推出点Q的运动轨迹是以O为圆心,OQ为半径的圆弧,圆心角为120°,已解决可解决问题.
【详解】解:如图,连接,取使得中点,连接.
∵四边形是矩形,
∴,
∴,
∴,
∵,
∴,
∴点的运动轨迹是以为圆心,为半径的圆弧,圆心角为,
∴点的运动路径长.
故答案为.
【点睛】本题考查轨迹,矩形的性质,轴对称的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
19.如图,是⊙O的内接三角形,且AB是⊙O的直径,点P为⊙O上的动点,且,⊙O的半径为6,则点P到AC距离的最大值是___.
【答案】.
【分析】过O作OM⊥AC于M,延长MO交⊙O于P,则此时,点P到AC距离的最大,且点P到AC距离的最大值=PM,解直角三角形即可得到结论.
【详解】过O作于M,延长MO交⊙O于P,则此时,点P到AC距离的最大,且点P到AC距离的最大值,
∵,,⊙O的半径为6,
∴,
∴,
∴,
∴则点P到AC距离的最大值是,
故答案为:.
【点睛】本题考查了三角形的外接圆与外心,圆周角定理,解直角三角形,正确的作出辅助线是解题的关键.
20.如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC边上,且BM=6. P为对角线BD上一点,则PM—PN的最大值为___.
【答案】2.
【分析】如图所示,以BD为对称轴作N的对称点,连接,根据对称性质可知,,由此可得,当三点共线时,取“=”,此时即PM—PN的值最大,由正方形的性质求出AC的长,继而可得,,再证明,可得PM∥AB∥CD,∠90°,判断出△为等腰直角三角形,求得长即可得答案.
【详解】如图所示,以BD为对称轴作N的对称点,连接,根据对称性质可知,,∴,当三点共线时,取“=”,
∵正方形边长为8,
∴AC=AB=,
∵O为AC中点,
∴AO=OC=,
∵N为OA中点,
∴ON=,
∴,
∴,
∵BM=6,
∴CM=AB-BM=8-6=2,
∴,
∴PM∥AB∥CD,∠90°,
∵∠=45°,
∴△为等腰直角三角形,
∴CM==2,
故答案为:2.
【点睛】本题考查了正方形的性质,平行线分线段成比例定理,等腰直角三角形的判定与性质,最值问题等,熟练掌握和灵活运用相关知识是解题的关键.
三、解答题
21.如图,抛物线C1:y=x2﹣2x与抛物线C2:y=ax2+bx开口大小相同、方向相反,它们相交于O,C两点,且分别与x轴的正半轴交于点B,点A,OA=2OB.
(1)求抛物线C2的解析式;
(2)在抛物线C2的对称轴上是否存在点P,使PA+PC的值最小?若存在,求出点P的坐标,若不存在,说明理由;
(3)M是直线OC上方抛物线C2上的一个动点,连接MO,MC,M运动到什么位置时,△MOC面积最大?并求出最大面积.
【答案】(1)y=﹣x2+4x;(2)线段AC′的长度;(3)S△MOC最大值为.
【分析】(1)C1、C2:y=ax2+bx开口大小相同、方向相反,则a=-1,将点A的坐标代入C2的表达式,即可求解;
(2)作点C关于C1对称轴的对称点C′(-1,3),连接AC′交函数C2的对称轴与点P,此时PA+PC的值最小,即可求解;
(3)S△MOC=MH×xC=(-x2+4x-x)= -x2+,即可求解.
【详解】(1)令:y=x2﹣2x=0,则x=0或2,即点B(2,0),
∵C1、C2:y=ax2+bx开口大小相同、方向相反,则a=﹣1,
则点A(4,0),将点A的坐标代入C2的表达式得:
0=﹣16+4b,解得:b=4,
故抛物线C2的解析式为:y=﹣x2+4x;
(2)联立C1、C2表达式并解得:x=0或3,
故点C(3,3),
作点C关于C1对称轴的对称点C′(﹣1,3),
连接AC′交函数C2的对称轴与点P,
此时PA+PC的值最小为:线段AC′的长度;
(3)直线OC的表达式为:y=x,
过点M作y轴的平行线交OC于点H,
设点M(x,﹣x2+4x),则点H(x,x),
则S△MOCMH×xC(﹣x2+4x﹣x)x2,
∵0,故x,
S△MOC最大值为.
【点睛】本题考查了待定系数法求解析式,还考查了三角形的面积,要注意将三角形分解成两个三角形求解;还要注意求最大值可以借助于二次函数.
22.如图一,在射线的一侧以为一条边作矩形,,,点是线段上一动点(不与点重合),连结,过点作的垂线交射线于点,连接.
(1)求的大小;
(2)问题探究:动点在运动的过程中,
①是否能使为等腰三角形,如果能,求出线段的长度;如果不能,请说明理由.
②的大小是否改变?若不改变,请求出的大小;若改变,请说明理由.
(3)问题解决:
如图二,当动点运动到的中点时,与的交点为,的中点为,求线段的长度.
【答案】(1);(2)①能,的值为5或;②大小不变,;(3).
【分析】(1)在中,求出的正切值即可解决问题.
(2)①分两种情形:当时,当时,分别求解即可.
②.利用四点共圆解决问题即可.
(3)首先证明是等边三角形,再证明垂直平分线段,解直角三角形即可解决问题.
【详解】解:(1)如图一(1)中,
∵四边形是矩形,
∴,
∵,
∴.
(2)①如图一(1)中,当时,
∵,,,
∴,
∴,
在中,∵,,
∴,
∵,,
∴是等边三角形,
∴,
∴.
如图一(2)中,当时,易证,
∵,
∴,∵,
∴,
∴,
∴,
综上所述,满足条件的的值为5或.
②结论:大小不变.
理由:如图一(1)中,∵,
∴四点共圆,
∴.
如图一(2)中,∵,
∴四点共圆,
∴,
∵,
∴,
综上所述,.
(3)如图二中,
∵,
∴,
∴,
∴,
∴是等边三角形,
∴,
∵,
∴,
∴,
∵,
∴垂直平分线段,
∴,
∴,
∵,,
∴.
【点睛】本题属于四边形综合题,考查了矩形的性质,全等三角形的判定和性质,解直角三角形,等边三角形的判定和性质,锐角三角函数,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.
23.如图,在中,,,,点分别是边上的动点(点不与重合),且,过点作的平行线,交于点,连接,设为.
(1)试说明不论为何值时,总有∽;
(2)是否存在一点,使得四边形为平行四边形,试说明理由;
(3)当为何值时,四边形的面积最大,并求出最大值.
【答案】(1)见解析;(2)当时,四边形为平行四边形;(3)当时,四边形的面积最大,最大值为.
【分析】(1)根据题意得到∠MQB=∠CAB,根据相似三角形的判定定理证明;
(2)根据对边平行且相等的四边形是平行四边形解答;
(3)根据勾股定理求出BC,根据相似三角形的性质用x表示出QM、BM,根据梯形面积公式列出二次函数解析式,根据二次函数性质计算即可.
【详解】解:(1)∵,
∴,
∴,又,
∴∽;
(2)当时,四边形为平行四边形,
∵,,
∴四边形为平行四边形;
(3)∵,
∴,
∵∽,
∴,即,
解得,,
∵,
∴,即,
解得,,
则四边形的面积,
∴当时,四边形的面积最大,最大值为.
【点睛】本题考查的是相似三角形的判定和性质、平行四边形的判定、二次函数的性质,掌握相似三角形的判定定理、二次函数的性质是解题的关键.
24.如图,在菱形ABCD中,连结BD、AC交于点O,过点O作于点H,以点O为圆心,OH为半径的半圆交AC于点M.
①求证:DC是⊙O的切线.
②若且,求图中阴影部分的面积.
③在②的条件下,P是线段BD上的一动点,当PD为何值时,的值最小,并求出最小值.
【答案】①证明见解析;②③
【分析】①作,证明OH为圆的半径,即可求解;
②利用,即可求解;
③作M关于BD的对称点N,连接HN交BD于点P,,此时最小,即可求解.
【详解】解:①过点O作,垂足为G,
在菱形ABCD中,AC是对角线,则AC平分∠BCD,
∵,,
∴,
∴OH、OG都为圆的半径,即DC是⊙O的切线;
②∵且,
∴,
,
∴,
在直角三角形OHC中,,
∴,,
∴,
;
③作M关于BD的对称点N,连接HN交BD于点P,
∵,
∴,此时最小,
∵,
,
∴,
∴,
∴,
即:PH+PM的最小值为,
在Rt△NPO中,
,
在Rt△COD中,
,
则.
【点睛】本题为圆的综合运用题,涉及到圆切线的性质及应用、点的对称性、解直角三角形等知识,其中③,通过点的对称性确定PH+PM最小,是本题的难点和关键.
25.如图,在正方形ABCD中,点E是AB边上的一点,以DE为边作正方形DEFG,DF与BC交于点M,延长EM交GF于点H,EF与GB交于点N,连接CG.
(1)求证:CD⊥CG;
(2)若tan∠MEN=,求的值;
(3)已知正方形ABCD的边长为1,点E在运动过程中,EM的长能否为?请说明理由.
【答案】(1)见解析;(2);(3)EM长不可能为.理由见解析.
【分析】(1)由正方形的性质得出∠A=∠ADC=∠EDG=90°,AD=CD,DE=DG,即∠ADE=∠CDG,由SAS证明△ADE≌△CDG得出∠A=∠DCG=90°,即可得出结论;
(2)先证明△EDM≌△GDM,得出∠DME=∠NMF,,再证明△DME∽△FMN,得出,,在Rt△EFH中,tan∠HEF=,所以;
(3)假设EM= ,先判断出点G在BC的延长线上,同(2)的方法得,EM=GM=,得出GM=,再判断出BM<,得出CM>,进而得出CM>GM,即可得出结论.
【详解】(1)证明:∵四边形ABCD和四边形DEFG是正方形,
∴∠A=∠ADC=∠EDG=90°,AD=CD,DE=DG,
∴∠ADE=∠CDG,
在△ADE和△CDG中,
∴△ADE≌△CDG(SAS),
∴∠A=∠DCG=90°,
∴CD⊥CG;
(2)解:
∵CD⊥CG,DC⊥BC,
∴G、C、M三点共线
∵四边形DEFG是正方形,
∴DG=DE,∠EDM=∠GDM=45°,
又∵DM=DM
∴△EDM≌△GDM,
∴∠DME=∠DMG
又∠DMG=∠NMF,
∴∠DME=∠NMF,
又∵∠EDM=∠NFM=45°
∴△DME∽△FMN,
∴
又∵DE∥HF,
∴,
又∵ED=EF,
∴
在Rt△EFH中,tan∠HEF=,
∴
(3)EM的长不可能为。
理由:假设EM的长为,
∵点E是AB边上一点,且∠EDG=∠ADC=90°,
∴点G在BC的延长线上,
同(2)的方法得,EM=GM=,
∴GM=,
在Rt△BEM中,EM是斜边,
∴BM<
∵正方形ABCD的边长为1,
∴BC=1,
∴CM>
∴CM>GM,
∴点G在正方形ABCD的边BC上,与“点G在BC的延长线上”相矛盾,
∴假设错误,
即:EM的长不可能为
【点睛】此题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,构造出相似三角形是解本题的关键,用反证法说明EM不可能为是解本题的难度.
26.在平面直角坐标系中,已知,动点在的图像上运动(不与重合),连接,过点作,交轴于点,连接.
(1)求线段长度的取值范围;
(2)试问:点运动过程中,是否问定值?如果是,求出该值;如果不是,请说明理由.
(3)当为等腰三角形时,求点的坐标.
【答案】(1);(2)为定值,=30°;(3), ,,
【分析】(1)作,由点在的图像上知:,求出AH,即可得解;
(2)①当点在第三象限时,②当点在第一象的线段上时,③当点在第一象限的线段的延长线上时,分别证明、、、四点共圆,即可求得=30°;
(3)分,,三种情况,分别求解即可.
【详解】解:(1)作,则
∵点在的图像上
∴,
∵,
∴
∴
(2)①当点在第三象限时,
由,可得、、、四点共圆,
∴
②当点在第一象的线段上时,
由,可得、、、四点共圆,
∴,又此时
∴
③当点在第一象限的线段的延长线上时,
由,可得,
∴、、、四点共圆,
∴
(3)设,则:
∵,∴
∴:
∴
∴,
①当时,则
整理得: 解得:
∴,
②当时,则
整理得:
解得:或
当时,点与重合,舍去,
∴,∴
③当时,
则
整理得:
解得:
∴
【点睛】本题为一次函数综合题,涉及到待定系数法求函数解析式、三角函数、等腰三角形判定和性质以及圆的相关性质等知识点,其中(2)(3),要注意分类求解,避免遗漏.
27.如图1,在正方形中,点是边上的一个动点(点与点不重合),连接,过点作于点,交于点.
(1)求证:;
(2)如图2,当点运动到中点时,连接,求证:;
(3)如图3,在(2)的条件下,过点作于点,分别交于点,求的值.
【答案】(1)见解析;(2)见解析;(3).
【分析】(1)先判断出,再由四边形是正方形,得出,,即可得出结论;
(2)过点作于,设,先求出,进而得出,再求出,,再判断出,进而判断出,即可得出结论;
(3)先求出,再求出,再判断出,求出,再用勾股定理求出,最后判断出,得出,即可得出结论.
【详解】(1)证明:∵,
∴,
∴,
∵四边形是正方形,
∴,
∴,
∴,
∴;
(2)证明:如图2,过点作于,
设,
∵点是的中点,
∴,
∴,
在中,根据面积相等,得,
∴,
∴,
∵,
∴,
∵,
∴,
∴,
∴,
∵,
∴,
∴;
(3)解:如图3,过点作于,
,
∴,
在中, ,
∴,
∵,
∴,
∴,
∴,
∴,
在中,,
∴,
∵,
∴,
∴,
∴,
∴,
∴,
∴
【点睛】此题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,判断出是解本题的关键.
28.如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动.
(1)当∠OAD=30°时,求点C的坐标;
(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为时,求OA的长;
(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.
【答案】(1)点C的坐标为(2,3+2);(2)OA=3;(3)OC的最大值为8,cos∠OAD=.
【分析】(1)作CE⊥y轴,先证∠CDE=∠OAD=30°得CE=CD=2,DE=,再由∠OAD=30°知OD=AD=3,从而得出点C坐标;
(2)先求出S△DCM=6,结合S四边形OMCD=知S△ODM=,S△OAD=9,设OA=x、OD=y,据此知x2+y2=36,xy=9,得出x2+y2=2xy,即x=y,代入x2+y2=36求得x的值,从而得出答案;
(3)由M为AD的中点,知OM=3,CM=5,由OC≤OM+CM=8知当O、M、C三点在同一直线时,OC有最大值8,连接OC,则此时OC与AD的交点为M,ON⊥AD,证△CMD∽△OMN得,据此求得MN=,ON=,AN=AM﹣MN=,再由OA=及cos∠OAD=可得答案.
【详解】(1)如图1,过点C作CE⊥y轴于点E,
∵矩形ABCD中,CD⊥AD,
∴∠CDE+∠ADO=90°,
又∵∠OAD+∠ADO=90°,
∴∠CDE=∠OAD=30°,
∴在Rt△CED中,CE=CD=2,DE==2,
在Rt△OAD中,∠OAD=30°,
∴OD=AD=3,
∴点C的坐标为(2,3+2);
(2)∵M为AD的中点,
∴DM=3,S△DCM=6,
又S四边形OMCD=,
∴S△ODM=,
∴S△OAD=9,
设OA=x、OD=y,则x2+y2=36,xy=9,
∴x2+y2=2xy,即x=y,
将x=y代入x2+y2=36得x2=18,
解得x=3(负值舍去),
∴OA=3;
(3)OC的最大值为8,
如图2,M为AD的中点,
∴OM=3,CM==5,
∴OC≤OM+CM=8,
当O、M、C三点在同一直线时,OC有最大值8,
连接OC,则此时OC与AD的交点为M,过点O作ON⊥AD,垂足为N,
∵∠CDM=∠ONM=90°,∠CMD=∠OMN,
∴△CMD∽△OMN,
∴,即,
解得MN=,ON=,
∴AN=AM﹣MN=,
在Rt△OAN中,OA=,
∴cos∠OAD=.
【点睛】本题是四边形的综合问题,解题的关键是掌握矩形的性质、勾股定理、相似三角形的判定与性质等知识点.
29.在等腰三角形中,,作交AB于点M,交AC于点N.
(1)在图1中,求证:;
(2)在图2中的线段CB上取一动点P,过P作交CM于点E,作交BN于点F,求证:;
(3)在图3中动点P在线段CB的延长线上,类似(2)过P作交CM的延长线于点E,作交NB的延长线于点F,求证:.
【答案】(1)见解析;(2)见解析;(3)见解析
【分析】(1)根据等腰三角形的性质得到,利用AAS定理证明;
(2)根据全等三角形的性质得到,证明、,根据相似三角形的性质列出比例式,证明结论;
(3)根据,得到,证明,得到,根据比例的性质证明即可.
【详解】证明:(1)∵,
∴,
∵,,
∴,
在和中,
,
∴;
(2)∵,
∴,
∵,
∴,
∴,
∵,
∴,
∴,
∴,
∴;
(3)同(2)的方法得到,,
∵,
∴,
∵,
∴,
∵,
∴,
∴,又,
∴,
∴,
∴,
∴,
∴.
【点睛】本题考查的是相似三角形的判定和性质、全等三角形的判定和性质、等腰三角形的性质,掌握相似三角形的判定定理和性质定理是解题的关键.
30.已知:是等腰直角三角形,,将绕点顺时针方向旋转得到,记旋转角为,当时,作,垂足为,与交于点
(1)如图1,当时,作的平分线交于点.
①写出旋转角的度数;②求证:;
(2)如图2,在(1)的条件下,设是直线上的一个动点,连接,,若,求线段的最小值.(结果保留根号)
【答案】(1)①旋转角为;②见解析;(2)的最小值为.
【分析】(1)①解直角三角形求出即可解决问题.
②连接,设交于点.在时截取,连接.首先证明是等边三角形,再证明,即可解决问题.
(2)如图2中,连接,,,作交的延长线于.证明,推出,推出,关于对称,推出,推出,求出即可解决问题.
【详解】解:(1)①旋转角为.
理由:如图1中,
∵,
∴,
∵,
∴,
∴,
∴旋转角为.
②证明:连接,设交于点.在时截取,连接.
∵,
∴,
∵平分,
∴,
∵,
∴,∵,
∴,
∴,
∴,
∵,
∴,
∴,
∴是等边三角形,
∴,
∵,,
∴是等边三角形,
,,
∵,
∴,
∴,
∴,
∴.
(2)解:如图2中,连接,,,作交的延长线于.
由②可知,,,,
∴,
∴,
∴,关于对称,
∴,
∴,
在中,,,
∴,,
∴.
∴的最小值为.
【点睛】本题属于四边形综合题,考查了旋转变换,全等三角形的判定和性质,相似三角形的判定和性质,三角形的三边关系等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.
相关试卷
这是一份中考数学二轮复习转练题型07 动态问题试题(含解析),共49页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份中考数学二轮复习专题训练题型06 分类讨论试题 (教师版),共46页。试卷主要包含了二次函数y=x2+等内容,欢迎下载使用。
这是一份中考数学二轮复习专题训练题型01 操作类试题(教师版),共33页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。