







- 第5章 函数的概念、性质及应用【过知识课件】-2022-2023学年高一数学单元复习(沪教版2020必修第一册) 课件 1 次下载
- 第一章 集合与逻辑【过习题】- 2022-2023学年高一数学单元复习(沪教版2020必修第一册) 试卷 2 次下载
- 第三章 幂、指数与对数【过习题】- 2022-2023学年高一数学单元复习(沪教版2020必修第一册) 试卷 3 次下载
- 第三章 幂、指数与对数【过知识】- 2022-2023学年高一数学单元复习(沪教版2020必修第一册) 课件 试卷 3 次下载
- 第二章 等式与不等式【过习题】- 2022-2023学年高一数学单元复习(沪教版2020必修第一册) 试卷 2 次下载
第一章 集合与逻辑【过知识】(课件)-2022-2023学年高一数学单元复习(沪教版2020必修第一册)
展开一、集合与元素(1)集合中元素的三个特征: 、 、 .(2)元素与集合的关系是 或 两种,用符号 或 表示.(3)集合的分类:让集合中元素个数的多少为: 、 、 .(4)集合的表示法: 、 .(5)常见数集的记法
四、简易逻辑1、命题(1)命题是指能判断其真假的语句.(2)命题有真、假两类.2、充分条件与必要条件(1)当 时, 是 的充分条件, 是的 必要条件.(2)当 时, 是 的充要条件.此时,在推理过程中 与 能互相替换.3、反证法,是指通过否定结论,推出矛盾,进而证明结论成立的证明方法.
考点1、集合的概念与表示方法
例1 下列对象能组成集合的是 A. 的所有近似值B.某个班级中学习好的所有同学C.2021年全国高考数学试卷中所有难题D.某个公司的全体工作人员
解析 D中的对象都是确定的,而且是不同的.A中的“近似值”,B中的“学习好”,C中的“难题”标准不明确,不满足确定性,因此A,B,C都不能构成集合.
对应练习 下列各组对象能构成集合的有①接近于1的所有正整数;②小于0的实数;③(2 020,1)与(1,2 020).A.1组 B.2组 C.3组 D.0组
解析 ①中接近于1的所有正整数标准不明确,故不能构成集合;②中“小于0”是一个明确的标准,能构成集合;③中(2 020,1)与(1,2 020)是两个不同的数对,是确定的,能构成集合.
例2(1).已知集合A中的元素x满足x-1< ,则下列各式正确的是A.3∈A且-3∉A B.3∈A且-3∈AC.3∉A且-3∉A D.3∉A且-3∈A
∴3-x=1或2或3或6,即x=2或1或0或-3.又x∈N,故x=0或1或2.即集合A中的元素为0,1,2.
对应练习 用符号“∈”或“∉”填空:
(2)设集合C是满足方程x=n2+1(其中n为正整数)的实数x的集合,则3___C,5___C;
解析 ∵n是正整数,∴n2+1≠3,∴3∉C;
当n=2时,n2+1=5,∴5∈C.
例3 已知集合A是由a-2,2a2+5a,12三个元素组成的,且-3∈A,求实数a.
解 由-3∈A,可得-3=a-2或-3=2a2+5a,
当a=-1时,a-2=-3,2a2+5a=-3,不符合集合中元素的互异性,故a=-1应舍去.
对应练习设集合A中含有三个元素3,x,x2-2x.求实数x应满足的条件;
解 由集合中元素的互异性可知,x≠3,且x≠x2-2x,x2-2x≠3.解得x≠-1且x≠0,x≠3.
例4 用列举法表示下列给定的集合:(1)不大于10的非负偶数组成的集合A;
解 不大于10的非负偶数有0,2,4,6,8,10,所以A={0,2,4,6,8,10}.
(2)方程x2-2x-3=0的实数根组成的集合C;
解 方程x2-2x-3=0的实数根为-1,3,所以C={-1,3}.
所以方程组的解集D={(3,1)}.
对应练习 用列举法表示下列集合:(1)方程x2=2x的所有实数解组成的集合;
解:方程x2=2x的解是x=0或x=2,所以方程的解组成的集合为{0,2}.
(2)直线y=2x+1与y轴的交点所组成的集合;
解 将x=0代入y=2x+1,得y=1,即交点是(0,1),故交点组成的集合是{(0,1)}.
(3)由所有正整数构成的集合.
解 正整数有1,2,3,…,所求集合为{1,2,3,…}.
例5 用描述法表示下列集合:(1)不等式2x-3<1的解组成的集合A;
解 不等式2x-3<1的解组成的集合为A,则集合A中的元素是数,设代表元素为x,则x满足2x-3<1,则A={x|2x-3<1},即A={x|x<2}.
(2)被3除余2的正整数的集合B;
解 设被3除余2的数为x,则x=3n+2,n∈Z.但元素为正整数,故x=3n+2,n∈N.所以被3除余2的正整数的集合B={x|x=3n+2,n∈N}.
(3)平面直角坐标系中第二象限内的点组成的集合D.
解 平面直角坐标系中第二象限内的点的横坐标为负,纵坐标为正,即x<0,y>0,故第二象限内的点的集合为D={(x,y)|x<0,y>0}.
对应练习用描述法表示下列集合:(1)比1大又比10小的实数组成的集合;
解 可以表示成{x∈R|1
解 可以表示成{x|3x+4≥2x},即{x|x≥-4}.
(3)到两坐标轴距离相等的点的集合.
解 可以表示成{(x,y)|x±y=0}.
解析 因为A中元素是3的整数倍,而B中的元素是3的偶数倍,所以集合B是集合A的真子集.
(1)M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.
对应练习(3)已知集合A={2,3},B={x|mx-6=0},若B⊆A,则实数m等于A.3 B.2C.2或3 D.0或2或3
解析 当m=0时,方程mx-6=0无解,B=∅,满足B⊆A;
例7(1)设集合A={x|-1≤x≤2},B={x|0≤x≤4},则A∩B等于A.{x|0≤x≤2} B.{x|1≤x≤2}C.{x|0≤x≤4} D.{x|1≤x≤4}
解析 在数轴上表示出集合A与B,如图所示.
则由交集的定义,知A∩B={x|0≤x≤2}.
(2)设集合A={-1,0,-2},B={x|x2-x-6=0},则A∪B等于A.{-2} B.{-2,3}C.{-1,0,-2} D.{-1,0,-2,3}
解析 因为A={-1,0,-2},B={x|x2-x-6=0}={-2,3},所以A∪B={-1,0,-2,3}.
{-5,-4,3,4}
对应练习 (1)已知集合A={x|-3
由图可知B={2,3,5,7}.
∴a的取值范围为{a|-1≤a≤0}.
(3)已知集合A={x|0≤x≤2},B={x|a≤x≤a+3}.
考点4、充分条件与必要条件
例8 (1)设x∈R,则“x>3或x<0”是“x>4”的A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件
解析 由x>3或x<0,推不出x>4,但当x>4时,不等式x>3或x<0成立.
(2)设p:实数x满足A={x|x≤3a或x≥a(a<0)}.q:实数x满足B={x|-4≤x<-2}.且q是p的充分非必要条件,求实数a的取值范围.
对应练习(1)设x∈R,则“|x-2|<1”是“x>1或x<-2”的A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件
解析 |x-2|<1⇔1
(2)若-a
解析 把“至少有一个”改为“所有”,“满足”改为“都不满足”得命题的否定.
所有正实数x都不满足方程x2+2(a-1)x+2a+6=0
对应练习(1)命题“同位角相等”的否定为__________________.
(2)命题p:存在实数x∈R,使得方程ax2+2x-1=0成立.若命题p为真命题,求实数a的取值范围.
解 当a=0时,方程为2x-1=0,显然有实数根,满足题意;当a≠0时,由题意可得ax2+2x-1=0有实根,得Δ=4+4a≥0,解得a≥-1,且a≠0.综上可得a≥-1,即实数a的取值范围是{a|a≥-1}.
例11 已知集合A中的元素均为整数,对于k∈A,如果k-1∉A且k+1∉A,那么称k是A的一个“孤立元”.给定集合S={1,2,3,4,5,6,7,8},由S中的3个元素构成的所有集合中,不含“孤立元”的集合共有_____个.
解析 依题意可知,所谓不含“孤立元”的集合就是集合中的3个元素必须是3个相邻的正整数,故所求的集合为{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},共6个.
对应练习 若集合A具有以下性质:①0∈A,1∈A;②若x∈A,y∈A,则x-y∈A,且x≠0时, ∈A.则称集合A是“好集”.给出下列说法:①集合B={-1,0,1}是“好集”;②有理数集Q是“好集”;③设集合A是“好集”,若x∈A,y∈A,则x+y∈A.其中,正确说法的个数是A.0 B.1 C.2 D.3
解析 ①集合B不是“好集”,假设集合B是“好集”,因为-1∈B, 1∈B,所以-1-1=-2∈B,这与-2∉B矛盾.②有理数集Q是“好集”,因为0∈Q,1∈Q,对任意的x∈Q,y∈Q,有x-y∈Q,且x≠0时, ∈Q,所以有理数集Q是“好集”.③因为集合A是“好集”,所以0∈A,若x∈A,y∈A,则0-y∈A,即-y∈A,所以x-(-y)∈A,即x+y∈A.
第2章 圆锥曲线【过知识】(课件)- 2022-2023学年高二数学单元复习(沪教版2020年选择性必修第一册): 这是一份第2章 圆锥曲线【过知识】(课件)- 2022-2023学年高二数学单元复习(沪教版2020年选择性必修第一册),共60页。PPT课件主要包含了知识网络,知识梳理,常用结论汇总,d>r1+r2,d=r1+r2,r1-r2<,d<r1+r2,d=r1-r2,d<r1-r2,曲线与方程等内容,欢迎下载使用。
第1章 坐标平面上的直线【过知识】(课件)-2022-2023学年高二数学单元复习(沪教版2020选择性必修第一册): 这是一份第1章 坐标平面上的直线【过知识】(课件)-2022-2023学年高二数学单元复习(沪教版2020选择性必修第一册),共43页。PPT课件主要包含了知识网络,知识梳理,平行于,tanθ,无数个解,唯一解,k1=k2,k1·k2=-1,夹角与距离公式,考点突破等内容,欢迎下载使用。
第7章 三角函数【过知识】(课件)- 2022-2023学年高一数学单元复习(沪教版2020必修第二册): 这是一份第7章 三角函数【过知识】(课件)- 2022-2023学年高一数学单元复习(沪教版2020必修第二册),共51页。PPT课件主要包含了知识网络,知识梳理,考点突破,三角函数综合,真题实战等内容,欢迎下载使用。