![中考数学三轮冲刺考前强化练习06 圆(教师版)第1页](http://img-preview.51jiaoxi.com/2/3/14177973/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![中考数学三轮冲刺考前强化练习06 圆(教师版)第2页](http://img-preview.51jiaoxi.com/2/3/14177973/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![中考数学三轮冲刺考前强化练习06 圆(教师版)第3页](http://img-preview.51jiaoxi.com/2/3/14177973/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:中考数学三轮冲刺考前强化练习 (教师版)
中考数学三轮冲刺考前强化练习06 圆(教师版)
展开
这是一份中考数学三轮冲刺考前强化练习06 圆(教师版),共28页。试卷主要包含了圆心角都能构成等腰三角形)等内容,欢迎下载使用。
06 圆
知识点包含:四者关系定理、垂径定理、圆周角的性质定理与推理、圆的切线判定定理
圆的切线性质定理、弧长公式、扇形面积公式、圆内接四边形性质定理、
圆的外心(内心)性质、直角三角形内切圆的半径公式
知识点清单:
1、 常见辅助线:
知半径、弦长作弦心距,构造直角三角形
知直径(圆周角是直角) 利用圆周角性质,构造直角三角形
见切点 连半径,
2、 常用知识点:
勾股定理、中位线、同弧所对圆周角相等、同弧所对圆周角与圆心角的关系、
同角(等角)的余角相等、三角形的外角、等角的三角函数值相等、母子相似图形
等腰三角形的性质(等腰对等边、三线合一、圆心角都能构成等腰三角形)、
等边三角形的判定(有一个角为60度的等腰三角形)
3、 圆中双解:
点与圆点在圆外、圆上、圆内
两平行线段的距离分平行线在圆心同侧和圆心异侧
一弦对两圆周角在弦同侧,相等;在弦异侧,互补
4、 常考知识点:
①垂径定理(知二推三定理)
即过圆心、垂直弦、平分弦(过弦的中点)、优劣弧中点,
知道其中两个就有其余三个成立,一般我们看到弦、弧的中点、弦的中点时,常依据垂径定理构造直角三角形
②圆周角定理:一般圆周角的度数等于它所对弧度数的一半
同弧或等弧所对的圆周角相等(弧、弦、弦心距、圆心角有一组量相等,其余都相等)
知直径(圆周角是直角) 利用圆周角性质,构造直角三角形
③圆内接四边形:圆内接四边形的对角互补,每个外角等于它的内对角
④圆的切线:垂直于过且点的半径 见切点 连半径,
⑤弧长、扇形面积公式:
中考在线:
1、(2019•阜新)如图,CB为⊙O的切线,点B为切点,CO的延长线交⊙O于点A,若∠A=25°,则∠C的度数是( )
A.25° B.30° C.35° D.40°
【解答】解:如图:连接OB,
∵∠A=25°,
∴∠COB=2∠A=2×25°=50°,
∵AB与⊙O相切于点B,
∴∠OBC=90°,
∴∠C=90°﹣∠BOC=90°﹣50°=40°.
故选:D.
2、(2019•青海)如图,在扇形AOB中,AC为弦,∠AOB=140°,∠CAO=60°,OA=6,则的长为( )
A. B. C.2π D.2π
【解答】解:连接OC,
∵OA=OC,∠CAO=60°,
∴△AOC为等边三角形,
∴∠AOC=60°,
∴∠BOC=∠AOB﹣∠AOC=140°﹣60°=80°,
则的长==,
故选:B.
3、(2019•葫芦岛)如图,在⊙O中,∠BAC=15°,∠ADC=20°,则∠ABO的度数为( )
A.70° B.55° C.45° D.35°
【解答】解:连接OA、OC,
∵∠BAC=15°,∠ADC=20°,
∴∠AOB=2(∠ADC+∠BAC)=70°,
∵OA=OB(都是半径),
∴∠ABO=∠OAB=(180°﹣∠AOB)=55°.
故选:B.
4、(2019•莱芜区)如图,点A、B,C,D在⊙O上,AB=AC,∠A=40°,BD∥AC,若⊙O的半径为2.则图中阴影部分的面积是( )
A.﹣ B.﹣ C.﹣ D.﹣
【解答】解:如图所示,连接BC、OD、OB,
∵∠A=40°,AB=AC,
∴∠ACB=70°,
∵BD∥AC,
∴∠ABD=∠A=40°,
∴∠ACD=∠ABD=40°,[来源:学+科+网Z+X+X+K]
∴∠BCD=30°,
则∠BOD=2∠BCD=60°,
又OD=OB,
∴△BOD是等边三角形,
则图中阴影部分的面积是S扇形BOD﹣S△BOD
=﹣×22
=π﹣,
故选:B.
5.(2019•陕西)如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是( )
A.20° B.35° C.40° D.55°
【解答】解:连接FB.
∵∠AOF=40°,
∴∠FOB=180°﹣40°=140°,
∴∠FEB=∠FOB=70°
∵EF=EB
∴∠EFB=∠EBF=55°,
∵FO=BO,
∴∠OFB=∠OBF=20°,
∴∠EFO=∠EBO,
∠EFO=∠EFB﹣∠OFB=35°,
故选:B.
6、(2019•赤峰)如图,AB是⊙O的弦,OC⊥AB交⊙O于点C,点D是⊙O上一点,∠ADC=30°,则∠BOC的度数为( )
A.30° B.40° C.50° D.60°
【解答】解:如图,∵∠ADC=30°,
∴∠AOC=2∠ADC=60°.
∵AB是⊙O的弦,OC⊥AB交⊙O于点C,
∴=.
∴∠AOC=∠BOC=60°.
故选:D.
7、(2019•梧州)如图,在半径为的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是( )
A.2 B.2 C.2 D.4
【解答】解:过点O作OF⊥CD于点F,OG⊥AB于G,连接OB、OD、OE,如图所示:
则DF=CF,AG=BG=AB=3,
∴EG=AG﹣AE=2,
在Rt△BOG中,OG===2,
∴EG=OG,
∴△EOG是等腰直角三角形,
∴∠OEG=45°,OE=OG=2,
∵∠DEB=75°,
∴∠OEF=30°,
∴OF=OE=,
在Rt△ODF中,DF===,
∴CD=2DF=2;
故选:C.
8、(2019•云南)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是( )
A.48π B.45π C.36π D.32π
【解答】解:侧面积是:πr2=×π×82=32π,
底面圆半径为:,
底面积=π×42=16π,
故圆锥的全面积是:32π+16π=48π.
故选:A.
9、(2019•云南)如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是( )
A.4 B.6.25 C.7.5 D.9
【解答】解:∵AB=5,BC=13,CA=12,
∴AB2+CA2=BC2,
∴△ABC为直角三角形,∠A=90°,
∵AB、AC与⊙O分别相切于点E、F
∴OF⊥AB,OE⊥AC,
∴四边形OFAE为正方形,
设OE=r,
则AE=AF=r,
∵△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,
∴BD=BF=5﹣r,CD=CE=12﹣r,
∴5﹣r+12﹣r=13,
∴r==2,
∴阴影部分(即四边形AEOF)的面积是2×2=4.
故选:A.
10、(2019•玉林)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,点O是AB的三等分点,半圆O与AC相切,M,N分别是BC与半圆弧上的动点,则MN的最小值和最大值之和是( )
A.5 B.6 C.7 D.8
【解答】解:如图,设⊙O与AC相切于点D,连接OD,作OP⊥BC垂足为P交⊙O于F,
此时垂线段OP最短,PF最小值为OP﹣OF,
∵AC=4,BC=3,
∴AB=5
∵∠OPB=90°,
∴OP∥AC
∵点O是AB的三等分点,
∴OB=×5=,==,
∴OP=,
∵⊙O与AC相切于点D,
∴OD⊥AC,
∴OD∥BC,
∴==,
∴OD=1,
∴MN最小值为OP﹣OF=﹣1=,
如图,当N在AB边上时,M与B重合时,MN经过圆心,经过圆心的弦最长,
MN最大值=+1=,
∴MN长的最大值与最小值的和是6.
故选:B.
11、(2019•荆门)如图,△ABC内心为I,连接AI并延长交△ABC的外接圆于D,则线段DI与DB的关系是( )
A.DI=DB B.DI>DB C.DI<DB D.不确定
【解答】解:连接BI,如图,
∵△ABC内心为I,
∴∠1=∠2,∠5=∠6,
∵∠3=∠1,
∴∠3=∠2,
∵∠4=∠2+∠6=∠3+∠5,
即∠4=∠DBI,
∴DI=DB.
故选:A.
12、(2019•镇江)如图,四边形ABCD是半圆的内接四边形,AB是直径,=.若∠C=110°,则∠ABC的度数等于( )
A.55° B.60° C.65° D.70°
【解答】解:连接AC,
∵四边形ABCD是半圆的内接四边形,
∴∠DAB=180°﹣∠C=70°,
∵=,
∴∠CAB=∠DAB=35°,
∵AB是直径,
∴∠ACB=90°,
∴∠ABC=90°﹣∠CAB=55°,
故选:A.
13、(2019•贺州)如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙O与AC相切于点D,BD平分∠ABC,AD=OD,AB=12,CD的长是( )
A.2 B.2 C.3 D.4
【解答】解:∵⊙O与AC相切于点D,
∴AC⊥OD,
∴∠ADO=90°,
∵AD=OD,
∴tanA==,
∴∠A=30°,
∵BD平分∠ABC,
∴∠OBD=∠CBD,
∵OB=OD,
∴∠OBD=∠ODB,
∴∠ODB=∠CBD,
∴OD∥BC,
∴∠C=∠ADO=90°,
∴∠ABC=60°,BC=AB=6,AC=BC=6,
∴∠CBD=30°,
∴CD=BC=×6=2;
故选:A.
14、(2019•泸州)如图,等腰△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AB=AC=5,BC=6,则DE的长是( )
A. B. C. D.
【解答】解:连接OA、OE、OB,OB交DE于H,如图,
∵等腰△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,
∴OA平分∠BAC,OE⊥BC,OD⊥AB,BE=BD,
∵AB=AC,
∴AO⊥BC,
∴点A、O、E共线,
即AE⊥BC,
∴BE=CE=3,
在Rt△ABE中,AE==4,
∵BD=BE=3,
∴AD=2,
设⊙O的半径为r,则OD=OE=r,AO=4﹣r,
在Rt△AOD中,r2+22=(4﹣r)2,解得r=,
在Rt△BOE中,OB==,[来源:学科网ZXXK]
∵BE=BD,OE=OD,
∴OB垂直平分DE,
∴DH=EH,OB⊥DE,
∵HE•OB=OE•BE,
∴HE===,
∴DE=2EH=.
故选:D.
15、(2019•贵港)如图,AD是⊙O的直径,=,若∠AOB=40°,则圆周角∠BPC的度数是( )
A.40° B.50° C.60° D.70°
【解答】解:∵=,∠AOB=40°,
∴∠COD=∠AOB=40°,
∵∠AOB+∠BOC+∠COD=180°,
∴∠BOC=100°,
∴∠BPC=∠BOC=50°,
故选:B.
16、(2019•烟台)如图,AB是⊙O的直径,直线DE与⊙O相切于点C,过A,B分别作AD⊥DE,BE⊥DE,垂足为点D,E,连接AC,BC,若AD=,CE=3,则的长为( )
A. B.π C.π D.π
【解答】解:连接OC,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠ACD+∠BCE=90°,
∵AD⊥DE,BE⊥DE,
∴∠DAC+∠ACD=90°,
∴∠DAC=∠ECB,
∵∠ADC=∠CEB=90°,
∴△ADC∽△CEB,
∴=,即=,
∵tan∠ABC==,
∴∠ABC=30°,
∴AB=2AC,∠AOC=60°,
∵直线DE与⊙O相切于点C,
∴∠ACD=∠ABC=30°,
∴AC=2AD=2,
∴AB=4,
∴⊙O的半径为2,
∴的长为:=π,
故选:D.
17、(2019•哈尔滨)如图,PA、PB分别与⊙O相切于A、B两点,点C为⊙O上一点,连接AC、BC,若∠P=50°,则∠ACB的度数为( )
A.60° B.75° C.70° D.65°
【解答】解:连接OA、OB,
∵PA、PB分别与⊙O相切于A、B两点,
∴OA⊥PA,OB⊥PB,
∴∠OAP=∠OBP=90°,
∴∠AOB=180°﹣∠P=180°﹣50°=130°,
∴∠ACB=∠AOB=×130°=65°.
故选:D.
18、(2019•安顺)如图,半径为3的⊙A经过原点O和点C (0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为( )
A. B.2 C. D.
【解答】解:作直径CD,
在Rt△OCD中,CD=6,OC=2,
则OD==4,
tan∠CDO==,
由圆周角定理得,∠OBC=∠CDO,
则tan∠OBC=,
故选:D.
19、(2019•福建)如图,PA、PB是⊙O切线,A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB等于( )
A.55° B.70° C.110° D.125°
【解答】解:连接OA,OB,
∵PA,PB是⊙O的切线,
∴PA⊥OA,PB⊥OB,
∵∠ACB=55°,
∴∠AOB=110°,
∴∠APB=360°﹣90°﹣90°﹣110°=70°.
故选:B.
20、(2019•苏州)如图,AB为⊙O的切线,切点为A,连接AO、BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为( )
A.54° B.36° C.32° D.27°
【解答】解:∵AB为⊙O的切线,
∴∠OAB=90°,
∵∠ABO=36°,
∴∠AOB=90°﹣∠ABO=54°,
∵OA=OD,
∴∠ADC=∠OAD,
∵∠AOB=∠ADC+∠OAD,[来源:Z§xx§k.Com]
∴∠ADC=∠AOB=27°;
故选:D.
21、(2019•绍兴)如图,△ABC内接于⊙O,∠B=65°,∠C=70°.若BC=2,则的长为( )
A.π B.π C.2π D.2π
【解答】解:连接OB,OC.
∵∠A=180°﹣∠ABC﹣∠ACB=180°﹣65°﹣70°=45°,
∴∠BOC=90°,
∵BC=2,
∴OB=OC=2,
∴的长为=π,
故选:A.
22、(2019•聊城)如图,BC是半圆O的直径,D,E是上两点,连接BD,CE并延长交于点A,连接OD,OE.如果∠A=70°,那么∠DOE的度数为( )
A.35° B.38° C.40° D.42°
【解答】解:连接CD,如图所示:
∵BC是半圆O的直径,
∴∠BDC=90°,
∴∠ADC=90°,
∴∠ACD=90°﹣∠A=20°,
∴∠DOE=2∠ACD=40°,
故选:C.
23、(2019•凉山州)如图,在△AOC中,OA=3cm,OC=1cm,将△AOC绕点O顺时针旋转90°后得到△BOD,则AC边在旋转过程中所扫过的图形的面积为( )cm2.
A. B.2π C.π D.π
【解答】解:∵△AOC≌△BOD,
∴在旋转过程中所扫过的图形的面积=扇形OAB的面积﹣扇形OCD的面积=﹣=2π,
故选:B.
24、(2019•潍坊)如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连接AC交DE于点F.若sin∠CAB=,DF=5,则BC的长为( )
A.8 B.10 C.12 D.16
【解答】解:连接BD,如图,
∵AB为直径,
∴∠ADB=∠ACB=90°,
∵AD=CD,
∴∠DAC=∠DCA,
而∠DCA=∠ABD,
∴∠DAC=∠ABD,
∵DE⊥AB,
∴∠ABD+∠BDE=90°,
而∠ADE+∠BDE=90°,
∴∠ABD=∠ADE,
∴∠ADE=∠DAC,
∴FD=FA=5,
在Rt△AEF中,∵sin∠CAB==,
∴EF=3,
∴AE==4,DE=5+3=8,
∵∠ADE=∠DBE,∠AED=∠BED,
∴△ADE∽△DBE,
∴DE:BE=AE:DE,即8:BE=4:8,
∴BE=16,
∴AB=4+16=20,
在Rt△ABC中,∵sin∠CAB==,
∴BC=20×=12.
故选:C.
25、(2019•台州)如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB,AC相切,则⊙O的半径为( )
A.2 B.3 C.4 D.4﹣
【解答】解:设⊙O与AC的切点为E,
连接AO,OE,
∵等边三角形ABC的边长为8,
∴AC=8,∠C=∠BAC=60°,
∵圆分别与边AB,AC相切,
∴∠BAO=∠CAO=BAC=30°,
∴∠AOC=90°,
∴OC=AC=4,
∵OE⊥AC,
∴OE=OC=2,
∴⊙O的半径为2,
故选:A.[来源:学科网ZXXK]
26、(2019•荆州)如图,AB为⊙O的直径,C为⊙O上一点,过B点的切线交AC的延长线于点D,E为弦AC的中点,AD=10,BD=6,若点P为直径AB上的一个动点,连接EP,当△AEP是直角三角形时,AP的长为 4和2.56 .
【解答】解:∵过B点的切线交AC的延长线于点D,
∴AB⊥BD,
∴AB===8,
当∠AEP=90°时,∵AE=EC,
∴EP经过圆心O,
∴AP=AO=4;
当∠APE=90°时,则EP∥BD,
∴=,
∵DB2=CD•AD,
∴CD===3.6,
∴AC=10﹣3.6=6.4,
∴AE=3.2,
∴=,
∴AP=2.56.
综上AP的长为4和2.56.
故答案为4和2.56.
27、(2019•南通)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=1,以边AC上一点O为圆心,OA为半径的⊙O经过点B.
(1)求⊙O的半径;
(2)点P为劣弧AB中点,作PQ⊥AC,垂足为Q,求OQ的长;
(3)在(2)的条件下,连接PC,求tan∠PCA的值.
【解答】解:(1)作OH⊥AB于H.
在Rt△ACB中,∵∠C=90°,∠A=30°,BC=1,
∴AB=2BC=2,
∵OH⊥AB,
∴AH=HB=1,
∴OA=AH÷cos30°=.
(2)如图2中,连接OP,PA.设OP交AB于H.
∵=,
∴OP⊥AB,
∴∠AHO=90°,
∵∠OAH=30°,
∴∠AOP=60°,
∵OA=OP,
∴△AOP是等边三角形,
∵PQ⊥OA,
∴OQ=QA=OA=.
(3)连接PC.
在Rt△ABC中,AC=BC=,
∵AQ=QO=AO=.
∴QC=AC﹣AQ=﹣=,
∵△AOP是等边三角形,PQ⊥OA,
∴PQ=1,
∴tan∠ACP===.
28、(2019•锦州)如图,M,N是以AB为直径的⊙O上的点,且=,弦MN交AB于点C,BM平分∠ABD,MF⊥BD于点F.
(1)求证:MF是⊙O的切线;
(2)若CN=3,BN=4,求CM的长.
【解答】证明:(1)连接OM,
∵OM=OB,
∴∠OMB=∠OBM,
∵BM平分∠ABD,
∴∠OBM=∠MBF,
∴∠OMB=∠MBF,
∴OM∥BF,
∵MF⊥BD,
∴OM⊥MF,即∠OMF=90°,
∴MF是⊙O的切线;
(2)如图,连接AN,ON
∵=,
∴AN=BN=4[来源:Zxxk.Com]
∵AB是直径,=,
∴∠ANB=90°,ON⊥AB
∴AB==4
∴AO=BO=ON=2
∴OC===1
∴AC=2+1,BC=2﹣1
∵∠A=∠NMB,∠ANC=∠MBC
∴△ACN∽△MCB
∴
∴AC•BC=CM•CN
∴7=3•CM
∴CM=
29、(2019•葫芦岛)如图,点M是矩形ABCD的边AD延长线上一点,以AM为直径的⊙O交矩形对角
线AC于点F,在线段CD上取一点E,连接EF,使EC=EF.
(1)求证:EF是⊙O的切线;
(2)若cos∠CAD=,AF=6,MD=2,求FC的长.
【解答】(1)证明:连接OF,
∵四边形ABCD是矩形,
∴∠ADC=90°,
∴∠CAD+∠DCA=90°,
∵EC=EF,
∴∠DCA=∠EFC,
∵OA=OF,
∴∠CAD=∠OFA,
∴∠EFC+∠OFA=90°,
∴∠EFO=90°,
∴EF⊥OF,
∵OF是半径,
∴EF是⊙O的切线;
(2)连接MF,
∵AM是直径,
∴∠AFM=90°,
在Rt△AFM中,cos∠CAD==,
∵AF=6,
∴=,
∴AM=10,
∵MD=2,
∴AD=8,
在Rt△ADC中,cos∠CAD==,
∴=,
∴AC=,
∴FC=﹣6=
30、(2019•沈阳)如图,AB是⊙O的直径,BC是⊙O的弦,直线MN与⊙O相切于点C,过点B作BD⊥MN于点D.
(1)求证:∠ABC=∠CBD;
(2)若BC=4,CD=4,则⊙O的半径是 .
【解答】(1)证明:连接OC,
∵MN为⊙O的切线,
∴OC⊥MN,
∵BD⊥MN,
∴OC∥BD,
∴∠CBD=∠BCO.
又∵OC=OB,
∴∠BCO=∠ABC,
∴∠CBD=∠ABC.;
(2)解:连接AC,
在Rt△BCD中,BC=4,CD=4,
∴BD==8,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠ACB=∠CDB=90°,
∵∠ABC=∠CBD,
∴△ABC∽△CBD,
∴=,即=,
∴AB=10,
∴⊙O的半径是5,
故答案为5.
31、(2019•雅安)如图,已知AB是⊙O的直径,AC,BC是⊙O的弦,OE∥AC交BC于E,过点B作⊙O的切线交OE的延长线于点D,连接DC并延长交BA的延长线于点F.
(1)求证:DC是⊙O的切线;
(2)若∠ABC=30°,AB=8,求线段CF的长.
【解答】(1)证明:连接OC,
∵OE∥AC,∴∠1=∠ACB,
∵AB是⊙O的直径,∴∠1=∠ACB=90°,
∴OD⊥BC,由垂径定理得OD垂直平分BC,
∴DB=DC,∴∠DBE=∠DCE,
又∵OC=OB,∴∠OBE=∠OCE,
即∠DBO=∠OCD,
∵DB为⊙O的切线,OB是半径,∴∠DBO=90°,
∴∠OCD=∠DBO=90°,即OC⊥DC,
∵OC是⊙O的半径,
∴DC是⊙O的切线;
(2)解:在Rt△ABC中,∠ABC=30°,
∴∠3=60°,又OA=OC,
∴△AOC是等边三角形,
∴∠COF=60°,
在Rt△COF中,tan∠COF=,
∴CF=4.
相关试卷
这是一份中考数学三轮冲刺考前过关练习卷06(教师版),共10页。
这是一份中考数学三轮冲刺考前强化练习08 各类应用题(教师版),共23页。试卷主要包含了利润问题应用题基本公式,3x=2018等内容,欢迎下载使用。
这是一份中考数学三轮冲刺考前强化练习07 图形变换(教师版),共18页。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)