数学九年级上册第二十一章 一元二次方程21.2 解一元二次方程21.2.2 公式法课后复习题
展开
这是一份数学九年级上册第二十一章 一元二次方程21.2 解一元二次方程21.2.2 公式法课后复习题,共5页。试卷主要包含了用公式法解下列方程.等内容,欢迎下载使用。
21.2.3用公式法解一元二次方程 教学目标1、理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.2、复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0) 的求根公式的推导公式,并应用公式法解一元二次方程.重点:求根公式的推导和公式法的应用.难点:一元二次方程求根公式法的推导.【课前预习】导学过程阅读教材部分,完成以下问题1、用配方法解下列方程(1)6x2-7x+1=0 (2)4x2-3x=52 总结用配方法解一元二次方程的步骤: 2、如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根? 问题:已知ax2+bx+c=0(a≠0)试推导它的两个根x1= x2=分析:因为前面具体数字已做得很多,我们现在不妨把a、b、c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得: ,二次项系数化为1,得 配方,得: 即 ∵a≠0,∴4a2>0,式子b2-4ac的值有以下三种情况:(1) b2-4ac>0,则>0 直接开平方,得: 即x=∴x1= ,x2= (2) b2-4ac=0,则=0此时方程的根为 即一元二次程ax2+bx+c=0(a≠0)有两个 的实根。(3) b2-4ac<0,则<0,此时(x+)2 <0,而x取任何实数都不能使(x+)2 <0,因此方程 实数根。由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a、b、c代入式子x=就得到方程的根,当b2-4ac<0,方程没有实数根。(2)x=叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.(4)由求根公式可知,一元二次方程最多有 实数根,也可能有 实根或者 实根。(5)一般地,式子b2-4ac叫做方程ax2+bx+c=0(a≠0)的根的判别式,通常用希腊字Δ表示它,即Δ= b2-4ac 用公式法解下列方程. (1)2x2-4x-1=0 (2)5x+2=3x2 (3)(x-2)(3x-5)=0 (4)4x2-3x+1=0 【课堂活动】活动1、预习反馈活动2、例习题分析例2、用公式法解下列方程.(1)x2-4x-7=0 (2)2x2-x+1=0 (3)5x2-3x=x+1 (4)x2+17=8x 练习:1、在什么情况下,一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根?有两个相等的实数根? 2、写出一元二次方程ax2+bx+c=0(a≠0,b2-4ac≥0)的求根公式。 3、方程x2-4x+4=0的根的情况是( )A有两个不相等的实数根 B有两个相等的实数根 C有一个实数根 D没有实数根4、用公式法解下列方程.(1)2x2-4x-1=0 (2)5x+2=3x2 (3)(x-2)(3x-5)=0 (4)4x2-3x+1=0 (5)x2+x-6=0 (6)x2-x-=0 (7)3x2-6x-2=0 (8)4x2-6=0 (9)x2+4x+8=4x+11 (10) x(2x-4)=5-8x 【课堂练习】:活动3、知识运用1、利用判别式判定下列方程的根的情况:(1)2x2-3x-=0 (2)16x2-24x+9=0 (3)x2-x+9=0 (4)3x2+10x=2x2+8x 2、用公式法解下列方程.(1)x2+x-12=0 (2)x2-x-=0 (3)x2+4x+8=2x+11 (4)x(x-4)=2-8x (5)x2+2x=0 (6) x2+x+10=0 归纳小结本节课应掌握:(1)求根公式的概念及其推导过程; (2)公式法的概念;(3)应用公式法解一元二次方程; (4)初步了解一元二次方程根的情况.【课后巩固】 一、选择题 1.用公式法解方程4x2-12x=3,得到( ).A.x= B.x= C.x= D.x= 2.方程x2+4x+6=0的根是( ).A.x1=,x2= B.x1=6,x2= C.x1=2,x2= D.x1=x2=- 3.(m2-n2)(m2-n2-2)-8=0,则m2-n2的值是( ). A.4 B.-2 C.4或-2 D.-4或2 二、填空题 1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,条件是________. 2.当x=______时,代数式x2-8x+12的值是-4. 3.若关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根为0,则m的值是_____.三、综合提高题 1.用公式法解关于x的方程:x2-2ax-b2+a2=0. 2.设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,(1)试推导x1+x2=-,x1·x2=;(2)求代数式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.
3、 某数学兴趣小组对关于x的方程(m+1)+(m-2)x-1=0提出了下列问题. (1)若使方程为一元二次方程,m是否存在?若存在,求出m并解此方程. (2)若使方程为一元二次方程m是否存在?若存在,请求出. 你能解决这个问题吗?
相关试卷
这是一份人教版九年级上册第二十一章 一元二次方程21.2 解一元二次方程21.2.3 因式分解法练习,共13页。试卷主要包含了分解因式的方法有那些?,9x2,5,x2=5,解方程等内容,欢迎下载使用。
这是一份初中数学人教版九年级上册21.2.3 因式分解法课后测评,共5页。试卷主要包含了2 解一元二次方程,9x2, ①等内容,欢迎下载使用。
这是一份初中数学人教版九年级上册21.2.3 因式分解法当堂检测题,共4页。试卷主要包含了重点,难点与关键等内容,欢迎下载使用。