初中数学人教版九年级上册24.1.2 垂直于弦的直径精品课件ppt
展开1. 进一步认识圆,了解圆是轴对称图形.2.理解垂直于弦的直径的性质和推论,并能应用它解决一些简单的计算、证明和作图问题. (重点)3.灵活运用垂径定理解决有关圆的问题. (难点)
连接圆上任意两点的线段叫做弦.
(2)圆心为O、半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合.
(1)在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点所形成的图形叫做圆.
圆上任意两点间的部分叫做弧.
你能通过折叠的方式找到圆形纸片的对称轴吗?在折的过程中你有何发现?什么是轴对称图形?我们学过哪些轴对称图形?
知识点1 圆的对称性
用纸剪一个圆,沿着圆的任意一条直径所在的直线对折,重复做几次,你发现了什么?由此你能得到什么结论?
发现:圆是轴对称图形,任何一条直径所在直线都是它的对称轴.
圆有无数条对称轴,每一条对称轴都是直径所在的直线.
1 求证:圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴.
导引:要证明圆是轴对称图形,只需证明圆上任意一点关于直径所在直线(对称轴)的对称点也在圆上.
证明:如图,设CD是⊙O的任意一条直径,A为⊙O上点C,D以外的任意 一点.过点A作AA′⊥CD,交⊙O于点A′,垂足为M,连接OA,OA′. 在△OAA′中,∵OA=OA′, ∴△OAA′是等腰三角形. 又AA′⊥CD,∴AM=MA′. 即CD是AA′的垂直平分线. 这就是说,对于圆上任意一点A, 在圆上都有关于直线CD的对称点A′,因此⊙O关于直线CD对称. 即圆是轴对称图形,任何一条直径所在直线都是圆的对称轴.
知识点2 垂径定理
2 如图,AB是⊙O的一条弦,直径CD⊥AB,垂足为E.你能发现图中有哪些相等的线段和劣弧? 为什么?
答:线段: AE=BE
垂直于弦的直径平分弦,并且平分弦所对的两条弧.
垂径定理的几个基本图形:
如果把垂径定理(垂直于弦的直径平分弦,并且平分弦所对的两条弧)结论与题设交换一条,命题是真命题吗?
①过圆心 ;②垂直于弦;③平分弦(非直径);④平分弦所对的优弧 ; ⑤平分弦所对的劣弧.在一个圆中,一条直线只要满足上面五个条件中的任意两个,都可以推出其他三个结论(知二推三).
“不是直径”这个条件能去掉吗?如果不能,请举出反例.
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
3 赵州桥(如图)是我国隋代建造的石拱桥,距今约有1 400年的历史,是我国古代人民勤劳与智慧的结晶.它的主桥拱是圆弧形,它的跨度(弧所对的弦的长)为37 m,拱高(弧的中点到弦的距离)为7.23 m,求赵州桥主桥拱的半径(结果保留小数点后一位).
分析:解决此问题的关键是根据赵州桥的实物图画出几何图形.
在Rt△OAD中,由勾股定理,得OA2=AD2+OD2,即R2=18.52+(R-7.23)2. 解得R≈27.3.因此,赵州桥的主桥拱半径约为27.3 m.
由题设可知AB=37,CD=7.23,
在圆中有关弦长a,半径r,弦心距d(圆心到弦的距离),弓形高h的计算题时,常常通过连半径或作弦心距构造直角三角形,利用垂径定理和勾股定理求解.
涉及垂径定理时辅助线的添加方法
弦a,弦心距d,弓形高h,半径r之间有以下关系:
d+h=r
如图,AB是圆O的弦,半径OC⊥AB于点D,若圆O的半径为5,AB=8,则CD的长是( )
A.2B.3C.4D.5
一条直线满足:①过圆心;②垂直于弦; ③平分弦(不是直径); ④平分弦所对的优弧;⑤平分弦所对的劣弧.满足其中两个条件就可以推出其他三个结论(“知二推三”)
垂直于弦的直径平分弦,并且平分弦所对的两条弧
两条辅助线:连半径,作弦心距
构造直角三角形,利用勾股定理计算或建立方程.
1.如图,⊙O的弦AB垂直于半径OC,垂足为D,则下列结论中错误的是( )A.∠AOD=∠BOD B.AD=BD C.OD=DC D.AC=BC2.半径为5的⊙O内有一点P,且OP=4,则过点P的最长弦的长是 ,最短弦的长是 .
3.如图,一条公路的转弯处是一段圆弧AB,点O是这段弧的圆心,AB=300m,C是AB上一点,OC⊥AB,垂足为D,CD=45m,求这段弯路的半径.解:设半径为r.∵OC⊥AB,∴AD=BD= AB=150m.在Rt△ODB中,OD2+BD2=OB2,即(r-45)2+1502=r2, 解得r=272.5m.因此,这段弯路的半径为272.5m.
4.如图,两个圆都以点O为圆心.求证:AC=BD.证明:过O作OE⊥AB,垂足为E,连接OA,OC,OD,OB,则AE=BE,CE=DE,∴AE-CE=BE-DE,即AC=BD.
如图,AB和CD分别是⊙O上的两条弦,圆心O到它们的垂线段分别是OM和ON,如果AB>CD,OM和ON的大小有什么关系?为什么?
初中数学人教版九年级上册24.1.2 垂直于弦的直径教学课件ppt: 这是一份初中数学人教版九年级上册24.1.2 垂直于弦的直径教学课件ppt,共24页。PPT课件主要包含了做一做等内容,欢迎下载使用。
人教版九年级上册24.1.2 垂直于弦的直径示范课ppt课件: 这是一份人教版九年级上册24.1.2 垂直于弦的直径示范课ppt课件,共27页。PPT课件主要包含了教学目标,复习回顾,新知探究,归纳小结,巩固练习,课堂练习,课堂总结等内容,欢迎下载使用。
初中数学人教版九年级上册第二十四章 圆24.1 圆的有关性质24.1.2 垂直于弦的直径课文配套ppt课件: 这是一份初中数学人教版九年级上册第二十四章 圆24.1 圆的有关性质24.1.2 垂直于弦的直径课文配套ppt课件,共36页。PPT课件主要包含了复习回顾等内容,欢迎下载使用。