人教版九年级下册28.1 锐角三角函数课时训练
展开
这是一份人教版九年级下册28.1 锐角三角函数课时训练,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
第二十八章 锐角三角函数自主检测(满分:120分 时间:100分钟) 一、选择题(本大题共10小题,每小题3分,共30分)1.计算6tan45°-2cos60°的结果是( )A.4 B.4 C.5 D.5 2.如图281,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是( )A.sinA= B.tanA=C.cosB= D.tanB=3.测得某坡面垂直高度为2 m,水平宽度为4 m,则坡度为( )A.1∶ B.1∶ C.2∶1 D.1∶2 图281 图2824.如图282,AC是电杆AB的一根拉线,测得BC=6米,∠ACB=52°,则拉线AC的长为( )A.米 B.米 C.6cos52°米 D.米5.在△ABC中,(tanA-)2+=0,则∠C的度数为( )A.30° B.45° C.60° D.75°6.如图283,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是( )A. B. C. D. 图283 图2847.在Rt△ABC中,∠C=90°,若sinA=,则cosA的值为( )A. B. C. D.8.在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,如果a2+b2=c2,那么下列结论正确的是( )A.csinA=a B.bcosB=cC.atanA=b D.ctanB=b9.如图284,在△ABC中,∠ACB=90°,CD⊥AB于点D,若AC=2 ,AB=4 ,则tan∠BCD的值为( )A. B. C. D.10.如图285,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4 m,测得仰角为60°,已知小敏同学身高(AB)为1.6 m,则这棵树的高度为( )(结果精确到0.1m,≈1.73).图285A.3.5 m B.3.6 m C.4.3 m D.5.1 m二、填空题(本大题共6小题,每小题4分,共24分)11.已知在Rt△ABC中,∠C=90°,tanA=,则cosB=________.12.计算:+2sin60°=________.13.在Rt△ABC中,∠C=90°,a=5 ,b=5 ,则∠A=________.14.如图286,已知Rt△ABC中,斜边BC上的高AD=4,cosB=,则AC=________. 图286 图28715.如图287,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A,B两岛的视角∠ACB=________.16.若方程x2-4x+3=0的两根分别是Rt△ABC的两条边,若△ABC最小的角为A,那么tanA=______.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:+-1-2cos60°+(2-π)0. 18.如图288,某河堤的横断面是梯形ABCD,BC∥AD,迎水坡AB长13米,且tan∠BAE=,求河堤的高BE.图288 19.如图289,在△ABC中,AD⊥BC,tanB=cos∠CAD.求证:AC=BD.图289 四、解答题(二)(本大题共3小题,每小题7分,共21分)20.如图2810,在鱼塘两侧有两棵树A,B,小华要测量此两树之间的距离,他在距A树30 m的C处测得∠ACB=30°,又在B处测得∠ABC=120°.求A,B两树之间的距离(结果精确到0.1 m,参考数据:≈1.414,≈1.732).图2810 21.如图2811,小明在公园放风筝,拿风筝线的手B离地面高度AB为1.5米,风筝飞到C处时的线长BC为30米,这时测得∠CBD=60°,求此时风筝离地面的高度(结果精确到0.1米;参考数据:≈1.73).图2811 22.图2812是一座堤坝的横断面,求BC的长(精确到0.1 m;参考数据:≈1.414,≈1.732).图2812 五、解答题(三)(本大题共3小题,每小题9分,共27分)23.地震发生后,一支专业搜救队驱车前往灾区救援,如图2813,汽车在一条南北走向的公路上向北行驶,当汽车在A处时,车载GPS(全球卫星定位系统)显示村庄C在北偏西26°方向,汽车以35 km/h的速度前行2 h到达B处,GPS显示村庄C在北偏西52°方向.(1)求B处到村庄C的距离;(2)求村庄C到该公路的距离(结果精确到0.1 km;参考数据:sin26°≈0.438 4,cos26°≈0.898 8,sin52°≈0.788 0,cos52°≈0.615 7).图2813 24.如图2814,已知一个等腰三角形ABC的底边长为10,面积为25.求:(1)△ABC的三个内角;(2)△ABC的周长.图2814 25.如图2815,在直角梯形纸片ABCD中,AD∥BC,∠A=90°,∠C=30°.折叠纸片使BC经过点D.点C落在点E处,BF是折痕,且BF=CF=8.(1)求∠BDF的度数;(2)求AB的长.图2815
第二十八章自主检测1.C 2.D 3.D 4.D 5.D 6.B 7.D 8.A9.B 解析:在Rt△ABC中,BC===2 ,又因为∠BCD=∠A,所以tan∠BCD=tanA===.10.D11. 12.3 13.30° 14.5 15.90° 16.17.解:原式=2+2-1+1=4.18.解:在Rt△ABE中,tan∠BAE==,设BE=12x,AE=5x,由勾股定理,得132=(12x)2+(5x)2,解得x=1,则BE=12米.19.证明:在Rt△ABD中,tanB=,在Rt△ACD中,cos∠CAD=,∵tanB=cos∠CAD,∴=.∴AC=BD.20.解:作BD⊥AC,垂足为点D.∵∠C=30°,∠ABC=120°,∴∠A=30°.∵∠A=∠C.∴AB=AC.∴AD=CD=AC=15.在Rt△ABD中,AB===10 ≈17.3.答:A,B两树之间的距离为17.3 m.21.解:∵BC=30,∠CBD=60°,sin∠CBD=,∴CD=BC·sin∠CBD=30×=15 ≈26.0.∴CE=CD+DE=CD+AB=26.0+1.5=27.5.答:此时风筝离地面的高度约为27.5米.22.解:如图D102,过点A,D分别作BC的垂线AE,DF,分别交BC于点E,F,则EF=AD=6.∵∠ABE=45°,∠DCF=30°,∴DF=7=AE=BE,且FC=CD·cos∠DCF=7 ≈7×1.732≈12.1(m).∴BC=7+6+12.1=25.1(m). 图D102 图D10323.解:过点C作CD⊥AB交AN于点D,如图D103.(1)∵∠CBD=52°,∠A=26°,∴∠BCA=26°.∴BC=AB=35×2=70 (km).即B处到村庄C的距离为70 km.(2)在Rt△CBD中,CD=BC·sin52°≈70×0.788 0≈55.2(km).即村庄C到该公路的距离约为55.2 km.24.解:过点A作底边上的高,交BC于点D,∴AD垂直平分BC,即BD=CD=BC=5. (1)∵等腰三角形ABC的底边长为10,面积为25,∴AD==5.∴tanB==1,即∠B=45°.∴∠C=∠B=45°,∠BAC=180°-∠B-∠C=90°.(2)∵△ABD为直角三角形,AD=BD=5,∴AB===5 .∴AC=AB=5 .故△ABC的周长为5 +5 +10=10 +10.25.解:(1)∵BF=CF,∠C=30°,∴∠FBC=30°.又由折叠性质知:∠DBF=∠FBC=30°.∴∠BDF=∠BDC=180°-∠DBC-∠C=180°-2×30°-30°=90°.(2)在Rt△BDF中,∵∠DBF=30°,BF=8,∴BD=4 .∵AD∥BC,∠A=90°,∴∠ABC=90°.又∵∠FBC=∠DBF=30°,∴∠ABD=30°.在Rt△BDA中,∵∠ABD=30°,BD=4 ,∴AB=6.
相关试卷
这是一份人教版九年级下册28.1 锐角三角函数优秀当堂检测题,共5页。
这是一份初中人教版28.1 锐角三角函数精品课时作业,共5页。试卷主要包含了在中,,那么下列各式中正确的是,已知中,,,,则等于,已知为锐角,且,那么的正切值为,如图,在中,,,则的长为,在中,,,,则的长是等内容,欢迎下载使用。
这是一份人教版九年级下册28.1 锐角三角函数同步训练题,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。