2023年中考复习存在性问题系列菱形的存在性问题专题探究试卷
展开2023年中考复习存在性问题系列
菱形的存在性问题专题探究
函数和菱形存在性问题作为压轴题目,结合了“分类讨论思想”,“方程思想”“菱形的判定方法”,势必要比单纯的菱形判定思考难度要大得多,因此我在研究了近些年中考真题之后尝试性地总结一下菱形存在性问题的通用解法,以供大家参考.
解题攻略
1.【基本概念】
菱形作为一种特殊的平行四边形,可以从以下几种方式得到:
(1)有一组邻边相等的平行四边形菱形;
(2)对角线互相垂直的平行四边形是菱形;
(3)四边都相等的四边形是菱形
2.【基本题型】
因此就常规题型而言,菱形存在性至少有2个动点,多则有3个动点,可细分如下两大类题型:
(1)2个定点+1个半动点+1个全动点
(2)1个定点+3个半动
3.【解题思路】
解决问题的方法也可有如下两种:
思路1:先平四,再菱形
设点坐标,根据平四存在性要求列出“A+C=B+D”(AC、BD为对角线),再结合一组邻边相等,得到方程组.
思路2:先等腰,再菱形
在构成菱形的4个点中任取3个点,必构成等腰三角形,根据等腰存在性方法可先确定第3个点,平移再确定第4个点.
典例剖析
- 两定两动:坐标轴+平面
例1.如图,在平面直角坐标系中,抛物线与轴交于点、两点(点在点左侧),与轴交于点.、的长是不等式组的整数解,点在抛物线上.
(1)求抛物线的解析式及的值;
(2)轴上的点使和的值最小,则 ;
(3)将抛物线向上平移,使点落在点处.当时,抛物线向上平移了 个单位;
(4)点在在轴上,平面直角坐标系内存在点使以点、、、为顶点的四边形为菱形,请直接写出点的坐标.
【答案】(1)-4(2)2(3)9(4)、、、.
【详解】:(1)所给不等式组的解集为,其整数解为2,3,
、的长是所给不等式组的整数解,且,
,,则,,
点、在抛物线上,
,
解得,
所求的抛物线的解析式为,
点在抛物线上,
;
(2)如图1所示,连接交轴于点,则此时最小,
设直线的解析式为,
点,在直线上,
,
解得,
直线的函数解析式为,
当时,,
即.,
,
故答案为:2;
(3)如图1,
,
,
,
,
,
,
,
,
抛物线向上平移9个单位,
故答案为:9;
(4)以、、、为顶点的四边形是菱形,对角线互相垂直且平分,
由,
与不能作为一组对角线,
分两种情况:
①以与为对角线时,如图2①和图2②,
如图2①,,
四边形是菱形,
轴,,
在中,,
,
,
如图2②,同理可得:,
②以与为对角线时,如图2③和图2④,
如图2③,菱形的边长仍为5,轴,
,
,
,
如图2④,同理可得:,
综上所述,①②两种情况,符合条件的点的坐标为:
、、、.
2.两定两动:对称轴+平面
例2.如图,在平面直角坐标系中,四边形ABCD为正方形,点A,B在x轴上,抛物线y=x2+bx+c经过点B,D(﹣4,5)两点,且与直线DC交于另一点E.
(1)求抛物线的解析式;
(2)F为抛物线对称轴上一点,Q为平面直角坐标系中的一点,是否存在以点Q,F,E,B为顶点的四边形是以BE为边的菱形.若存在,请求出点F的坐标;若不存在,请说明理由;
(3)P为y轴上一点,过点P作抛物线对称轴的垂线,垂足为M,连接ME,BP,探究EM+MP+PB是否存在最小值.若存在,请求出这个最小值及点M的坐标;若不存在,请说明理由.
【分析】(1)求出点B的坐标为(1,0),再用待定系数法即可求解;
(2)以点Q,F,E,B为顶点的四边形是以BE为边的菱形,故点B向右平移1个单位向上平移5个单位得到点E,则Q(F)向右平移1个单位向上平移5个单位得到点F(Q),且BE=EF(BE=EQ),即可求解;
(3)由题意抛物线的对称轴交x轴于点B′(﹣1,0),将点B′向左平移1个单位得到点B″(﹣2,0),连接B″E,交函数的对称轴于点M,过点M作MP⊥y轴,则点P、M为所求点,此时EM+MP+PB为最小,进而求解.
【解析】(1)由点D的纵坐标知,正方形ABCD的边长为5,
则OB=AB﹣AO=5﹣4=1,故点B的坐标为(1,0),
则,解得,
故抛物线的表达式为y=x2+2x﹣3;
(2)存在,理由:
∵点D、E关于抛物线对称轴对称,故点E的坐标为(2,5),
由抛物线的表达式知,其对称轴为直线x=﹣1,故设点F的坐标为(﹣1,m),
由点B、E的坐标得,BE2=(2﹣1)2+(5﹣0)2=26,
设点Q的坐标为(s,t),
∵以点Q,F,E,B为顶点的四边形是以BE为边的菱形,
故点B向右平移1个单位向上平移5个单位得到点E,则Q(F)向右平移1个单位向上平移5个单位得到点F(Q),且BE=EF(BE=EQ),
则或,
解得或,
故点F的坐标为(﹣1,5+)或(﹣1,5﹣)或(﹣1,)或(﹣1,﹣);
(3)存在,理由:
由题意抛物线的对称轴交x轴于点B′(﹣1,0),将点B′向左平移1个单位得到点B″(﹣2,0),
连接B″E,交函数的对称轴于点M,过点M作MP⊥y轴,则点P、M为所求点,此时EM+MP+PB为最小,
理由:∵B′B″=PM=1,且B′B″∥PM,故四边形B″B′PM为平行四边形,则B″M=B′P=BP,
则EM+MP+PB=EM+1+MB″=B″E+1为最小,
由点B″、E的坐标得,直线B″E的表达式为y=(x+2),
当x=﹣1时,y=(x+2)=,故点M的坐标为(﹣1,),
则EM+MP+PB的最小值B″E+1=1+=+1.
3.两定两动:斜线+抛物线
例3.(2021•山西)综合与探究
如图,抛物线y=x2+2x﹣6与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.
(1)求A、B,C三点的坐标并直接写出直线AC,BC的函数表达式.
(2)点P是直线AC下方抛物线上的一个动点,过点P作BC的平行线l,交线段AC于点D.
①试探究:在直线l上是否存在点E,使得以点D,C,B,E为顶点的四边形为菱形,若存在,求出点E的坐标,若不存在,请说明理由;
②设抛物线的对称轴与直线l交于点M,与直线AC交于点N.当S△DMN=S△AOC时,请直接写出DM的长.
【分析】(1)解方程x2+2x﹣6=0,可求得A、B的坐标,令x=0,可求得点C的坐标,即可得直线AC,BC的函数表达式;
(2)①设点D的坐标为(m,﹣m﹣6),其中﹣6<m<0,可得BD2=(m﹣2)2+(m+6)2,BC2=22+62=40,DC2=m2+(﹣m﹣6+6)2=2m2,分两种情况画出图形,根据菱形的性质即可求解;
②设点D的坐标为(m,﹣m﹣6),其中﹣6<m<0,由直线l∥BC可设直线BC的解析式为y=3k+b,由点D的坐标可得b=﹣4m﹣6,则M(﹣2,﹣4m﹣12),根据AC的函数表达式可得N(﹣2,﹣4),求出MN,根据S△DMN=S△AOC可求得m,求出点D,点M的坐标,即可得DM的长.
【解析】(1)当y=0时,x2+2x﹣6=0,
解得x1=﹣6,x2=2,
∴A(﹣6,0),B(2,0),
当x=0时,y=﹣6,
∴C(0,﹣6),
∵A(﹣6,0),C(0,﹣6),
∴直线AC的函数表达式为y=﹣x﹣6,
∵B(2,0),C(0,﹣6),
∴直线BC的函数表达式为y=3x﹣6;
(2)①存在:设点D的坐标为(m,﹣m﹣6),其中﹣6<m<0,
∵B(2,0),C(0,﹣6),
∴BD2=(m﹣2)2+(m+6)2,BC2=22+62=40,DC2=m2+(﹣m﹣6+6)2=2m2,
∵DE∥BC,
∴当DE=BC时,以点D,C,B,E为顶点的四边形为平行四边形,
分两种情况:
如图,当BD=BC时,四边形BDEC为菱形,
∴BD2=BC2,
∴(m﹣2)2+(m+6)2=40,
解得:m1=﹣4,m2=0(舍去),
∴点D的坐标为(﹣4,﹣2),
∵点D向左移动2各单位长度,向下移动6个单位长度得到点E,
∴点E的坐标为(﹣6,﹣8);
如图,当CD=CB时,四边形CBED为菱形,
∴CD2=CB2,
∴2m2=40,
解得:m1=﹣2,m2=2(舍去),
∴点D的坐标为(﹣2,2﹣6),
∵点D向右移动2各单位长度,向上移动6个单位长度得到点E,
∴点E的坐标为(2﹣2,2);
综上,存在点E,使得以点D,C,B,E为顶点的四边形为菱形,点E的坐标为(﹣6,﹣8)或(2﹣2,2);
②设点D的坐标为(m,﹣m﹣6),其中﹣6<m<0,
∵A(﹣6,0),B(2,0),
∴抛物线的对称轴为直线x=﹣2,
∵直线BC的函数表达式为y=3x﹣6,直线l∥BC,
∴设直线l的解析式为y=3x+b,
∵点D的坐标(m,﹣m﹣6),
∴b=﹣4m﹣6,
∴M(﹣2,﹣4m﹣12),
∵抛物线的对称轴与直线AC交于点N.
∴N(﹣2,﹣4),
∴MN=﹣4m﹣12+4=﹣4m﹣8,
∵S△DMN=S△AOC,
∴(﹣4m﹣8)(﹣2﹣m)=×6×6,
整理得:m2+4m﹣5=0,
解得:m1=﹣5,m2=1(舍去),
∴点D的坐标为(﹣5,﹣1),
∴点M的坐标为(﹣2,8),
∴DM==3,
答:DM的长为3.
变式练习
1.如图,在平面直角坐标系中,抛物线与直线交于A,B两点,其中,.
(1)求该抛物线的函数表达式;
(2)点P,Q为直线下方抛物线上任意两点,且满足点P的横坐标为m,点Q的横坐标为,过点P和点Q分别作y轴的平行线交直线于C点和D点,连接,求四边形面积的最大值;
(3)在(2)的条件下,将抛物线沿射线平移2个单位,得到新的抛物线,点E为点P的对应点,点F为的对称轴上任意一点,点G为平面直角坐标系内一点,当点构成以为边的菱形时,直接写出所有符合条件的点G的坐标.
【答案】(1);
(2);
(3)、、.
【分析】(1)用待定系数法求解即可;
(2)根据题意,求得直线解析式,以及四点坐标,得到、长度,利用二次函数的性质求解即可;
(3)根据平移的性质,求得的表达式,分两种情况,讨论求解即可.
【详解】(1)解:将,代入二次函数解析式,可得
,解得
即;
(2)设直线解析式,代入,,可得
,解得
即,
则,,,
,
,
,
即当时,最大,为;
(3)由(2)可知,
直线为与轴的交点为,与轴的交点为,两点之间的距离为,
沿射线平移个单位,可看成向右移动了4个单位,向下移动了2个单位,
∴,
则平移后,
抛物线的对称轴为,
设,
当时,如图:
则,
解得,
∴或,
当时,平移到,平移到,
∴,
当时,平移到,平移到,
∴,
当时,如下图:
,解得,
平移到,平移到,可得,
综上点的坐标为、、.
【点睛】本题考查二次函数综合应用,涉及待定系数法,四边形面积、菱形的性质及应用等知识解题的关键是用含字母的代数式表示相关点坐标和相关线段的长度.
2.如图,已知直线y=x+4与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c经过A,C两点,且与x轴的另一个交点为B,对称轴为直线x=﹣1.
(1)求抛物线的表达式;
(2)D是第二象限内抛物线上的动点,设点D的横坐标为m,求四边形ABCD面积S的最大值及此时D点的坐标;
(3)若点P在抛物线对称轴上,是否存在点P,Q,使以点A,C,P,Q为顶点的四边形是以AC为对角线的菱形?若存在,请求出P,Q两点的坐标;若不存在,请说明理由.
【答案】(1)y=﹣x2﹣x+4
(2)S最大=,D(﹣,5)
(3)存在,Q(﹣2,)
【分析】(1)先求得A,C,B三点的坐标,将抛物线设为交点式,进一步求得结果;
(2)作DF⊥AB于F,交AC于E,根据点D和点E坐标可表示出DE的长,进而表示出三角形ADC的面积,进而表示出S的函数关系式,进一步求得结果;
(3)根据菱形性质可得PA=PC,进而求得点P的坐标,根据菱形性质,进一步求得点Q坐标.
【详解】(1)解:当x=0时,y=4,
∴C (0,4),
当y=0时,x+4=0,
∴x=﹣3,
∴A (﹣3,0),
∵对称轴为直线x=﹣1,
∴B(1,0),
∴设抛物线的表达式:y=a(x﹣1)•(x+3),
∴4=﹣3a,
∴a=﹣,
∴抛物线的表达式为:y=﹣(x﹣1)•(x+3)=﹣x2﹣x+4;
(2)如图1,
作DF⊥AB于F,交AC于E,
∴D(m,﹣﹣m+4),E(m,﹣m+4),
∴DE=﹣﹣m+4﹣(m+4)=﹣m2﹣4m,
∴S△ADC=OA=•(﹣m2﹣4m)=﹣2m2﹣6m,
∵S△ABC===8,
∴S=﹣2m2﹣6m+8=﹣2(m+)2+,
∴当m=﹣时,S最大=,
当m=﹣时,y=﹣=5,
∴D(﹣,5);
(3)设P(﹣1,n),
∵以A,C,P,Q为顶点的四边形是以AC为对角线的菱形,
∴PA=PC,
即:PA2=PC2,
∴(﹣1+3)2+n2=1+(n﹣4)2,
∴n=,
∴P(﹣1,),
∵xP+xQ=xA+xC,yP+yQ=yA+yC
∴xQ=﹣3﹣(﹣1)=﹣2,yQ=4﹣=,
∴Q(﹣2,).
【点睛】本题考查了二次函数及其图象性质,勾股定理,菱形性质等知识,解决问题的关键是熟练掌握相关二次函数和菱形性质
菱形作为特殊的平行四边形其存在性问题亦是分类讨论中的一大难点.此类题目多以直角坐标平面为背景.题干中一般会给出两个顶点,第三个点在某个可求的函数图像上,在另一个函数的图像上或直角坐标平面内,求能与之前的三个点构成菱形的第四个点的坐标.此类题目的一大难度在于如何合理分类的问题.若题干中已知两定点的话,可以把这两定点连成的线段是菱形的一边或者对角线进行分类讨论,再利用菱形的性质确定出其他的顶点的位置.
2023年中考复习存在性问题系列 特殊角的存在性问题专题探究: 这是一份2023年中考复习存在性问题系列 特殊角的存在性问题专题探究,共13页。
2023年中考复习存在性问题系列正方形存在性问题专题探究讲义: 这是一份2023年中考复习存在性问题系列正方形存在性问题专题探究讲义,共13页。试卷主要包含了 基本题型,解题思路,综合与探究等内容,欢迎下载使用。
2023年中考复习存在性问题系列正方形存在性问题专题探究讲义: 这是一份2023年中考复习存在性问题系列正方形存在性问题专题探究讲义,共13页。试卷主要包含了 基本题型,解题思路,综合与探究等内容,欢迎下载使用。