年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2023年全国高考数学真题重组模拟卷(四)含答案

    立即下载
    加入资料篮
    2023年全国高考数学真题重组模拟卷(四)含答案第1页
    2023年全国高考数学真题重组模拟卷(四)含答案第2页
    2023年全国高考数学真题重组模拟卷(四)含答案第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023年全国高考数学真题重组模拟卷(四)含答案

    展开

    这是一份2023年全国高考数学真题重组模拟卷(四)含答案,共24页。
      绝密启用前冲刺2023年高考数学真题重组卷04新高考地区专用注意事项: 1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、单项选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。12022年高考北京已知全集,集合,则    A B C D2.(2021·全国·统考高考真题)设,则    A B C D32021年高考全国II北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为(轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O,半径r的球,其上点A的纬度是指与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为,记卫星信号覆盖地球表面的表面积为(单位:),则S占地球表面积的百分比约为(    A26% B34% C42% D50%42022年高考北京已知函数,则(    A上单调递减 B上单调递增C上单调递减 D上单调递增52021年高考全国I,则    A B C D62022年高考天津已知抛物线分别是双曲线的左、右焦点,抛物线的准线过双曲线的左焦点,与双曲线的渐近线交于点A,若,则双曲线的标准方程为(    A BC D72022高考全国乙卷某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为,且.记该棋手连胜两盘的概率为p,则(    Ap与该棋手和甲、乙、丙的比赛次序无关 B.该棋手在第二盘与甲比赛,p最大C.该棋手在第二盘与乙比赛,p最大 D.该棋手在第二盘与丙比赛,p最大82021年高考全国I若过点可以作曲线的两条切线,则(    A BC D二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.92020高考全国II我国新冠肺炎疫情进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是A.这11天复工指数和复产指数均逐日增加;B.这11天期间,复产指数增量大于复工指数的增量;C.第3天至第11天复工复产指数均超过80%;D.第9天至第11天复产指数增量大于复工指数的增量;102021年高考全国I已知为坐标原点,点,则(    A BC D112021年高考全国I已知点在圆上,点,则(    A.点到直线的距离小于B.点到直线的距离大于C.当最小时,D.当最大时,122022年高考全国II如图,四边形为正方形,平面,记三棱锥的体积分别为,则(    A BC D三、填空题:本题共4小题,每小题5分,共20分.132022年高考上海的展开式中,含项的系数为________142021高考全国I已知为坐标原点,抛物线()的焦点为上一点,轴垂直,轴上一点,且,若,则的准线方程为______.152022年高考北京已知数列各项均为正数,其前n项和满足.给出下列四个结论:的第2项小于3   为等比数列;为递减数列;       中存在小于的项.其中所有正确结论的序号是__________162022年高考天津,对任意实数x,记.若至少有3个零点,则实数的取值范围为______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.172021高考全国II是公差不为0的等差数列的前n项和,若1)求数列的通项公式2)求使成立的n的最小值.182022高考全国I一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据: 不够良好良好病例组4060对照组1090 (1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A表示事件选到的人卫生习惯不够良好B表示事件选到的人患有该疾病的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R)证明:)利用该调查数据,给出的估计值,并利用()的结果给出R的估计值.0.0500.0100.001k3.8416.63510.82819.(2020高考江苏)在ABC中,角ABC的对边分别为abc,已知1)求的值;2)在边BC上取一点D,使得,求的值.202020高考全国II如图,四棱锥P-ABCD的底面为正方形,PD底面ABCD.设平面PAD与平面PBC的交线为l1)证明:l平面PDC2)已知PD=AD=1Ql上的点,求PB与平面QCD所成角的正弦值的最大值.212022高考北京卷已知椭圆:的一个顶点为,焦距为(1)求椭圆E的方程;(2)过点作斜率为k的直线与椭圆E交于不同的两点BC,直线ABAC分别与x轴交于点MN,当时,求k的值.222022年高考全国I已知函数有相同的最小值.(1)a(2)证明:存在直线,其与两条曲线共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.
    冲刺2023年高考数学真题重组卷04新高考地区专用(参考答案)123456789101112DCCCCCDDCDACACDCD三、填空题:本题共4小题,每小题5分,共20分.131415①③④16四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17(1)(2)7.【解析】(1)由题意首先求得的值,然后结合题意求得数列的公差即可确定数列的通项公式;(2)首先求得前n项和的表达式,然后求解二次不等式即可确定n的最小值.【详解】(1)由等差数列的性质可得:,则:设等差数列的公差为,从而有:从而:,由于公差不为零,故:数列的通项公式为:.(2)由数列的通项公式可得:,则:则不等式即:,整理可得:解得:,又为正整数,故的最小值为.【点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.18(1)答案见解析(2)i)证明见解析;(ii);【解析】(1)由所给数据结合公式求出的值,将其与临界值比较大小,由此确定是否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异;(2)(i) 根据定义结合条件概率公式即可完成证明;(ii)根据(i)结合已知数据求.1由已知所以有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异.2(i)因为所以所以(ii) 由已知所以19.(1;(2.【解析】(1)方法一:利用余弦定理求得,利用正弦定理求得. 2)方法一:根据的值,求得的值,由(1)求得的值,从而求得的值,进而求得的值.【详解】(1[方法一]:正余弦定理综合法由余弦定理得,所以.由正弦定理得.[方法二]【最优解】:几何法过点A,垂足为E.在中,由,可得,又,所以中,,因此2[方法一]:两角和的正弦公式法由于,所以.由于,所以,所以.所以.由于,所以.所以.[方法二]【最优解】:几何法+两角差的正切公式法  在(1)的方法二的图中,由,可得,从而又由(1)可得,所以[方法三]:几何法+正弦定理法  在(1)的方法二中可得中,所以中,由正弦定理可得由此可得[方法四]:构造直角三角形法  如图,作,垂足为E,作,垂足为点G在(1)的方法二中可得,可得中,由(1)知,所以在中,,从而中,所以【整体点评】(1)方法一:使用余弦定理求得,然后使用正弦定理求得;方法二:抓住45°角的特点,作出辅助线,利用几何方法简单计算即得答案,运算尤其简洁,为最优解;(2)方法一:使用两角和的正弦公式求得的正弦值,进而求解;方法二:适当作出辅助线,利用两角差的正切公式求解,运算更为简洁,为最优解;方法三:在几何法的基础上,使用正弦定理求得的正弦值,进而得解;方法四:更多的使用几何的思维方式,直接作出含有的直角三角形,进而求解,也是很优美的方法.20.(1)证明见解析;(2.【解析】(1)利用线面垂直的判定定理证得平面,利用线面平行的判定定理以及性质定理,证得,从而得到平面2)方法一:根据题意,建立相应的空间直角坐标系,得到相应点的坐标,设出点,之后求得平面的法向量以及向量的坐标,求得的最大值,即为直线与平面所成角的正弦值的最大值.【详解】(1)证明: 在正方形中,,因为平面平面所以平面,又因为平面,平面平面所以,因为在四棱锥中,底面是正方形,所以平面,所以因为,所以平面2[方法一]【最优解】:通性通法因为两两垂直,建立空间直角坐标系,如图所示:因为,设,则有设平面的法向量为,即,则,所以平面的一个法向量为,则根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线PB与平面QCD所成角的正弦值等于,当且仅当时取等号,所以直线与平面所成角的正弦值的最大值为.[方法二]:定义法如图2,因为平面,所以平面在平面中,设在平面中,过P点作,交F,连接因为平面平面,所以又由平面平面,所以平面.又平面,所以.又由平面平面,所以平面,从而即为与平面所成角.,在中,易求相似,得,可得所以,当且仅当时等号成立.[方法三]:等体积法如图3,延长G,使得,连接,则,过G点作平面,交平面M,连接,则即为所求.,在三棱锥中,在三棱锥中,解得当且仅当时等号成立.中,易求,所以直线PB与平面QCD所成角的正弦值的最大值为【整体点评】(2)方法一:根据题意建立空间直角坐标系,直线PB与平面QCD所成角的正弦值即为平面的法向量与向量的夹角的余弦值的绝对值,即,再根据基本不等式即可求出,是本题的通性通法,也是最优解;方法二:利用直线与平面所成角的定义,作出直线PB与平面QCD所成角,再利用解三角形以及基本不等式即可求出;方法三:巧妙利用,将线转移,再利用等体积法求得点面距,利用直线PB与平面QCD所成角的正弦值即为点面距与线段长度的比值的方法,即可求出.21(1)(2)【解析】(1)依题意可得,即可求出,从而求出椭圆方程;2)首先表示出直线方程,设,联立直线与椭圆方程,消元列出韦达定理,由直线的方程,表示出,根据得到方程,解得即可;【详解】(1)解:依题意可得,又所以,所以椭圆方程为2)解:依题意过点的直线为,设,不妨令,消去整理得所以,解得所以直线的方程为,令,解得直线的方程为,令,解得所以所以整理得,解得22(1)(2)见解析【解析】(1)根据导数可得函数的单调性,从而可得相应的最小值,根据最小值相等可求a.注意分类讨论.2)根据(1)可得当时,的解的个数、的解的个数均为2,构建新函数,利用导数可得该函数只有一个零点且可得的大小关系,根据存在直线与曲线有三个不同的交点可得的取值,再根据两类方程的根的关系可证明三根成等差数列.【详解】(1的定义域为,而,则,此时无最小值,故.的定义域为,而.时,,故上为减函数,时,,故上为增函数,.时,,故上为减函数,时,,故上为增函数,.因为有相同的最小值,,整理得到,其中,则上的减函数,而的唯一解为,故的解为.综上,.2[方法一]由(1)可得的最小值为.时,考虑的解的个数、的解的个数.时,,当时,上为减函数,在上为增函数,所以,其中,则上为增函数,故,故有两个不同的零点,即的解的个数为2.时,,当时,上为减函数,在上为增函数,所以有两个不同的零点即的解的个数为2.,由(1)讨论可得仅有一个解,时,由(1)讨论可得均无根,故若存在直线与曲线有三个不同的交点,.,其中,故,则上为增函数,故所以,所以上为增函数,上有且只有一个零点且:时,时,因此若存在直线与曲线有三个不同的交点,此时有两个不同的根此时有两个不同的根所以为方程的解,同理也为方程的解可化为为方程的解,同理也为方程的解,所以,而.[方法二]公众号:高中试卷君知,上单调递减,在上单调递增;上单调递减,在上单调递增,且时,此时,显然与两条曲线共有0个交点,不符合题意;时,此时与两条曲线共有2个交点,交点的横坐标分别为01时,首先,证明与曲线2个交点,即证明2个零点,所以上单调递减,在上单调递增,又因为,则所以上存在且只存在1个零点,设为,在上存在且只存在1个零点,设为其次,证明与曲线和2个交点,即证明2个零点,所以上单调递减,在上单调递增,又因为,则所以上存在且只存在1个零点,设为,在上存在且只存在1个零点,设为再次,证明存在b,使得因为,所以,则,即所以只需证明上有解即可,上有零点,因为所以上存在零点,取一零点为,令即可,此时取则此时存在直线,其与两条曲线共有三个不同的交点,最后证明,即从左到右的三个交点的横坐标成等差数列,因为所以又因为上单调递减,,所以同理,因为又因为上单调递增,,所以又因为,所以即直线与两条曲线从左到右的三个交点的横坐标成等差数列.【点睛】思路点睛:函数的最值问题,往往需要利用导数讨论函数的单调性,此时注意对参数的分类讨论,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系. 
      

    相关试卷

    2023年全国高考数学真题重组模拟卷(四)含解析:

    这是一份2023年全国高考数学真题重组模拟卷(四)含解析,共36页。

    2023年全国高考数学真题重组模拟卷(一)PDF版含答案:

    这是一份2023年全国高考数学真题重组模拟卷(一)PDF版含答案,共18页。

    2023年全国高考数学真题重组模拟卷(五)含答案:

    这是一份2023年全国高考数学真题重组模拟卷(五)含答案,共23页。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map