2023届山东省菏泽市高三下学期一模联考数学试题含解析
展开2023届山东省菏泽市高三下学期一模联考数学试题
一、单选题
1.已知集合,则( )
A. B.
C.或 D.或
【答案】D
【分析】根据不等式的解法,求得,结合补集的运算,即可求解.
【详解】由不等式,解得,即,
根据补集的概念及运算,可得或.
故选:D.
2.设i是虚数单位,复数,则( )
A. B. C. D.
【答案】B
【分析】先化简复数,再根据共轭复数概念得结果.
【详解】
故选:B
【点睛】本题考查共轭复数概念,考查基本分析求解能力,属基础题.
3.2020年12月17日凌晨1时59分,嫦娥五号返回器携带月球样品成功着陆,这是我国首次实现了地外天体采样返回,标志着中国航天向前又迈出了一大步.月球距离地球约38万千米,有人说:在理想状态下,若将一张厚度约为0.1毫米的纸对折次其厚度就可以超过到达月球的距离,那么至少对折的次数是( )(,)
A.40 B.41 C.42 D.43
【答案】C
【解析】设对折次时,纸的厚度为,则是以为首项,公比为的等比数列,
求出的通项,解不等式即可求解
【详解】设对折次时,纸的厚度为,每次对折厚度变为原来的倍,
由题意知是以为首项,公比为的等比数列,
所以,
令,
即,所以,即,
解得:,
所以至少对折的次数是,
故选:C
【点睛】关键点点睛:本题解题的关键是根据题意抽象出等比数列的模型,求出数列的通项,转化为解不等式即可.
4.如图,八面体的每一个面都是正三角形,并且四个顶点在同一平面内,下列结论:①平面;②平面平面;③;④平面平面,正确命题的个数为( )
A.1 B.2 C.3 D.4
【答案】D
【分析】根据题意,以正八面体的中心为原点,分别为轴,建立如图所示空间直角坐标系,由空间向量的坐标运算以及法向量,对选项逐一判断,即可得到结果.
【详解】
以正八面体的中心为原点,分别为轴,建立如图所示空间直角坐标系,
设正八面体的边长为,则
所以,,
设面的法向量为,则,解得,取,即
又,所以,面,即面,①正确;
因为,所以,
又,面,面,则面,
由,平面,所以平面平面,②正确;
因为,则,所以,③正确;
易知平面的一个法向量为,平面的一个法向量为,
因为,所以平面平面,④正确;
故选:D
5.过抛物线焦点作倾斜角为的直线交抛物线于,则( )
A. B. C.1 D.16
【答案】A
【分析】点斜式设出直线l的方程,代入抛物线方程,根据抛物线的定义,利用韦达定理来求解.
【详解】化为标准形式由此知;
设直线l的方程为:, ,,根据抛物线定义知;
将,代入,可得,
由此代入.
故选:A
6.为了迎接“第32届菏泽国际牡丹文化旅游节”,某宣传团体的六名工作人员需要制作宣传海报,每人承担一项工作,现需要一名总负责,两名美工,三名文案,但甲,乙不参与美工,丙不能书写文案,则不同的分工方法种数为( )
A.9种 B.11种 C.15种 D.30种
【答案】C
【分析】利用分类加法计数原理进行分析,考虑丙是否是美工,由此展开分析并计算出不同的分工方法种数.
【详解】解:若丙是美工,则需要从甲、乙、丙之外的三人中再选一名美工,
然后从剩余四人中选三名文案,剩余一人是总负责人,共有种分工方法;
若丙不是美工,则丙一定是总负责人,
此时需从甲、乙、丙之外的三人中选两名美工,剩余三人是文案,共有种分工方法;
综上,共有种分工方法,
故选:C.
7.设实数满足,,,则的最小值为( )
A. B. C. D.
【答案】A
【分析】分为与,去掉绝对值后,根据“1”的代换,化简后分别根据基本不等式,即可求解得出答案.
【详解】当时,,
当且仅当,即,时等号成立,此时有最小值;
当时,.
当且仅当,即,时等号成立,此时有最小值.
所以,的最小值为.
故选:A.
8.定义在实数集上的函数,如果,使得,则称为函数的不动点.给定函数,,已知函数,,在上均存在唯一不动点,分别记为,则( )
A. B. C. D.
【答案】C
【分析】由已知可得,则,.然后证明在上恒成立.令,根据复合函数的单调性可知在上单调递减,即可得出.令,根据导函数可得在上单调递减,即可推得.
【详解】由已知可得,,则,
且,所以.
又,.
令,,则恒成立,
所以,在上单调递增,所以,所以.
所以,,即.
令,,
因为函数在上单调递增,在上单调递减,且,
根据复合函数的单调性可知,函数在上单调递减,
所以在上单调递减.
又,,所以.
因为在上单调递减,,所以.
又,所以,即.
令,,则恒成立,
所以,在上单调递减.
又,,
所以.
综上可得,.
故选:C.
【点睛】关键点点睛:证明在上恒成立.然后即可采用放缩法构造函数,进而根据函数的单调性得出大小关系.
二、多选题
9.为了解学生的身体状况,某校随机抽取了100名学生测量体重,经统计,这些学生的体重数据(单位:千克)全部介于45至70之间,将数据整理得到如图所示的频率分布直方图,则( )
A.频率分布直方图中的值为0.04
B.这100名学生中体重不低于60千克的人数为20
C.这100名学生体重的众数约为52.5
D.据此可以估计该校学生体重的75%分位数约为61.25
【答案】ACD
【分析】利用频率之和为1可判断选项A,利用频率与频数的关系即可判断选项B,利用频率分布直方图中众数的计算方法求解众数,即可判断选项C,由百分位数的计算方法求解,即可判断选项D.
【详解】解:由,解得,故选项A正确;
体重不低于60千克的频率为,
所以这100名学生中体重不低于60千克的人数为人,故选项B错误;
100名学生体重的众数约为,故选项C正确;
因为体重不低于60千克的频率为0.3,而体重在,的频率为,
所以计该校学生体重的分位数约为,故选项D正确.
故选:ACD.
10.已知圆,下列说法正确有( )
A.对于,直线与圆都有两个公共点
B.圆与动圆有四条公切线的充要条件是
C.过直线上任意一点作圆的两条切线(为切点),则四边形的面积的最小值为4
D.圆上存在三点到直线距离均为1
【答案】BC
【分析】对于选项A,转化为判断直线恒过的定点与圆的位置关系即可;对于选项B,转化为两圆外离,运用几何法求解即可;对于选项C,由,转化为求最小值即可;对于选项D,设圆心到直线的距离为d,比较与1的关系即可.
【详解】对于选项A,因为,即:,
所以,所以直线恒过定点,
又因为,所以定点在圆O外,
所以直线与圆O可能相交、相切、相离,即交点个数可能为0个、1个、2个.故选项A错误;
对于选项B,因为圆O与动圆C有4条公切线,所以圆O与圆C相离,
又因为圆O的圆心,半径,圆C的圆心,半径,
所以,即:,解得:.故选项B正确;
对于选项C,,
又因为O到P的距离的最小值为O到直线的距离,即:,
所以四边形PAOB的面积的最小值为.故选项C正确;
对于选项D,因为圆O的圆心,半径,则圆心O到直线的距离为,
所以,所以圆O上存在两点到直线的距离为1.故选项D错误.
故选:BC.
11.已知函数,下列命题正确的有( )
A.在区间上有3个零点
B.要得到的图象,可将函数图象上的所有点向右平移个单位长度
C.的周期为,最大值为1
D.的值域为
【答案】BC
【分析】,根据的范围得出的零点,即可判断A项;根据已知得出平移后的函数解析式,即可判断B项;由已知化简可得,即可判断C项;由已知可得,,换元根据导函数求解在上的值域,即可判断D项.
【详解】对于A项,由已知可得,.
因为,所以,
当或时,即或时,有,
所以在区间上有2个零点,故A项错误;
对于B项,将函数图象上的所有点向右平移个单位长度得到函数,故B项正确;
对于C项,由已知可得,,
所以,的周期,最大值为,故C项正确;
对于D项,.
令,,,
则.
解,可得.
解,可得,所以在上单调递增;
解,可得或,所以在上单调递减,在上单调递减.
且,,
,.
所以,当时,有最小值;当时,有最大值.
所以,的值域为,故D项错误.
故选:BC.
【点睛】思路点睛:求出.令,,.然后借助导函数求出在上的最值,即可得出函数的值域.
12.已知双曲线的左、右焦点分别为、,过点的直线与双曲线的左、右两支分别交于、两点,下列命题正确的有( )
A.当点为线段的中点时,直线的斜率为
B.若,则
C.
D.若直线的斜率为,且,则
【答案】BCD
【分析】对于A选项,设,代入双曲线,用点差法即可判断;对于B选项,设,表示出和,得出,再结合即可得出结论;对于C选项,设,其中,由双曲线方程,得出,利用两点之间距离公式,分别表示出和,通过做差即可得出结论;对于D选项,根据双曲线的定义,得出,再证出点与点关于直线对称,则,即可得出结论.
【详解】选项A:
设,代入双曲线得,
,两式相减得,
,
∵点为线段的中点,
∴,,
即,,
∴,
,故A错误;
选项B:
设,
,,
,
,
又 ,
,故B正确;
选项C:
设,其中,
则,即,
,
,
,
,
,
,故C正确;
选项D:
,,
,,
,
∵直线的斜率为即,且过点,
∴直线的方程为:,
又∵,,
,
即,
又∵点到直线的距离:,
点到直线的距离:,
即,
∴点与点关于直线对称,
,
,故D正确;
故选:BCD.
【点睛】结论点睛:本题涉及到双曲线中的有关结论:
(1)若点是双曲线上一条弦的中点,则直线的斜率;
(2)若双曲线上有两点、,且位于不同两支,则.
三、填空题
13.已知夹角为的非零向量满足,,则__________.
【答案】2
【分析】由得,化简代入结合数量积的定义即可得出答案.
【详解】因为的夹角为,且,
而,则,
所以,
则,解得:.
故答案为:2.
14.定义在上的函数,满足为偶函数,为奇函数,若,则__________.
【答案】1
【分析】根据为偶函数、为奇函数的性质,利用赋值法可得答案.
【详解】若为偶函数,为奇函数,
则,,
令,则,即,
令,则,即,
又因为,所以.
故答案为:1.
15.设均为非零实数,且满足,则__________.
【答案】1
【分析】先将原式化简得到,再令,
即可得到,从而求得结果.
【详解】由题意可得,,
令,则,
即,
所以,即
故
故答案为:
16.正三棱锥的高为为中点,过作与棱平行的平面,将三棱锥分为上下两部分,设上、下两部分的体积分别为,则__________.
【答案】
【分析】根据题意,做出截面,然后利用向量的线性表示及共线定理推论可得,进而可得,从而可得的值.
【详解】连接并延长交于,连接,则为的中点,
延长交于,过作分别交于,连接,
因为,平面,平面,
所以平面,又平面,故平面即为过作与棱平行的平面,
由题可知,,即,
设,则,又为中点,
所以,
所以,所以,即,
,,
所以.
故答案为:.
四、解答题
17.如图,在平面四边形中,,.
(1)试用表示的长;
(2)求的最大值.
【答案】(1)
(2)
【分析】(1)根据已知条件将用表示,再在中利用余弦定理求解即可;
(2)在中先用余弦定理将用表示,再结合(1)的结论,利用二次函数的性质求解最大值即可.
【详解】(1)(),,,
,则
在中,
,
,则.
(2)在中,
,
则当时,取到最大值.
故的最大值是
18.为了促进学生德、智、体、美、劳全面发展,某校成立了生物科技小组,在同一块试验田内交替种植A、B、C三种农作物(该试验田每次只能种植一种农作物),为了保持土壤肥度,每种农作物都不连续种植,共种植三次.在每次种植后会有的可能性种植的可能性种植;在每次种植的前提下再种植的概率为,种植的概率为,在每次种植的前提下再种植的概率为,种植的概率为.
(1)在第一次种植的前提下,求第三次种植的概率;
(2)在第一次种植的前提下,求种植作物次数的分布列及期望.
【答案】(1)
(2)分布列见解析,
【分析】(1)设,,表示第次种植作物,,的事件,其中,2,3,由全概率公式可得,代入即可得出答案.
(2)求出的可能取值及每个变量对应的概率,即可求出的分布列,再由期望公式求出的期望.
【详解】(1)设,,表示第次种植作物,,的事件,其中,2,3.
在第一次种植的情况下,第三次种植的概率为:
;
(2)由已知条件,在第1次种植的前提下:,,,
,,,
因为第一次必种植,则随机变量的可能取值为1,2,-
,
,
所以的分布列为:
1 | 2 | |
.
19.如图,直四棱柱中,,与交于为棱上一点,且,点到平面的距离为.
(1)判断是否在平面内,并说明理由;
(2)求平面与平面所成角的余弦值.
【答案】(1)直线不在平面内,理由见解析
(2)
【分析】(1)以为坐标原点,过作与垂直的直线为轴,所在的直线分别为轴,轴,建立如图所示的空间直角坐标系,由到平面的距离公式求出直四棱锥的高,求出平面的一个法向量,由可证明直线不在平面内.
(2)求出平面的一个法向量,由二面角的向量公式代入即可得出答案.
【详解】(1)以为坐标原点,过作与垂直的直线为轴,所在的直线分别为轴,轴,
建立如图所示的空间直角坐标系,设直四棱锥的高为,则,
,,,,
设平面的一个法向量为,
则即取.-
所以点到平面的距离为,令解得.
设平面的一个法向量为,由,,
则即,取,
而,所以,
又与,共面,故直线不在平面内.
(2)依(1)知平面的一个法向量为,
易知平面的一个法向量为,
设二面角的平面角为,则,
故二面角的余弦值.
20.已知首项不为0的等差数列,公差(为给定常数),为数列前项和,且为所有可能取值由小到大组成的数列.
(1)求;
(2)设为数列的前项和,证明:.
【答案】(1)
(2)证明见解析
【分析】(1)根据题意,由等差数列的通项公式与求和公式得到关于的方程,即可得到结果;
(2)根据题意,得到数列的通项公式,再由裂项相消法即可得到其前项和.
【详解】(1)由题意得,,得①
由,得②
由①②,可得且,则,
由,当在范围内取值时的所有取值为:
所以.
(2)
所以
由于是递减的,所以
21.已知函数.
(1)若函数在R上单调递增,求的取值范围;
(2)若,且有两个零点,证明:.
【答案】(1)
(2)证明见解析
【分析】(1)由函数单调递增,得到导函数大于等于0恒成立,参变分离得到,求出的单调性和极值,最值情况,得到答案;
(2)转化为为方程的两根,由得到,记(),得到其单调性,求出在和过处的切线方程分别为和,作差法得到,,记与和的交点横坐标分别为,求出,,利用放缩法求出答案.
【详解】(1)函数在R上单调递增,因此,即,
记,则,
令得:,令得:,
故在上单调递增,在单调递减,
所以在处取得极大值,也是最大值,,
因此;
(2)不妨设,由,,
即为方程的两根,
由,故,解得:,所以,
记(),则,令得,
当时,,当时,,
在上单调递减,在上单调递增,
在处的切线方程为,记(),则单调递减,
则,
其中在上单调递增,且,
即,
设在的切线方程过点,
则在的切线斜率为,
所以,解得:,
取,则在的切线方程过点,且斜率为,
切线方程为,即,记(),
则单调递增;
又,
其中令,,故,
令得:,令得:,
当时,单调递减,
当时,单调递增,
故,故,
记与和的交点横坐标分别为,则
,故,由,单调递减,所以,
,故,由,单调递增,所以,
由于,
所以.
【点睛】方法点睛:分离参数法基本步骤为:
第一步:首先对待含参的不等式问题在能够判断出参数的系数正负的情况下,可以根据不等式的性质将参数分离出来,得到一个一端是参数,另一端是变量表达式的不等式,
第二步:先求出含变量一边的式子的最值,通常使用导函数或基本不等式进行求解.
第三步:由此推出参数的取值范围即可得到结论.
22.如图,椭圆的焦点分别为为椭圆上一点,的面积最大值为.
(1)求椭圆的方程;
(2)若分别为椭圆的上、下顶点,不垂直坐标轴的直线交椭圆于(在上方,在下方,且均不与点重合)两点,直线的斜率分别为,且,求面积的最大值.
【答案】(1)
(2)
【分析】(1)根据条件,得到关于的方程,即可得到结果;
(2)根据题意设直线的方程为,联立直线与椭圆方程,结合韦达定理,再由列出方程,代入计算,即可得到结果.
【详解】(1),,,故椭圆的方程为;
(2)依题意设直线的方程为,,
联立方程组,消元得:,
,,
由得:,两边同除,,
即;将代入上式得:
整理得:所以或(舍),
当时等号成立,满足条件,所以面积的最大值为.
山东省菏泽市2023届高三数学下学期一模联考试题(Word版附解析): 这是一份山东省菏泽市2023届高三数学下学期一模联考试题(Word版附解析),共27页。试卷主要包含了本试卷分选择题和非选择题两部分, 设实数满足,,,则的最小值为,04等内容,欢迎下载使用。
2023届山东省菏泽市高三二模数学试题含解析: 这是一份2023届山东省菏泽市高三二模数学试题含解析,共24页。试卷主要包含了单选题,多选题,填空题,双空题,解答题等内容,欢迎下载使用。
精品解析:山东省菏泽市2023届高三下学期一模联考数学试题: 这是一份精品解析:山东省菏泽市2023届高三下学期一模联考数学试题,文件包含精品解析山东省菏泽市2023届高三下学期一模联考数学试题解析版docx、精品解析山东省菏泽市2023届高三下学期一模联考数学试题原卷版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。