2022年全国新高考2卷数学一题多解
展开
这是一份2022年全国新高考2卷数学一题多解,共8页。试卷主要包含了已知集合,则,若,则等内容,欢迎下载使用。
2022年全国新高考2卷数学一题多解1.已知集合,则( )A. B. C. D.2.若,则( )A. B.C. D.3.曲线过坐标原点的两条切线的方程为____________,____________.4.已知直线l与椭圆在第一象限交于A,B两点,l与x轴,y轴分别交于M,N两点,且,则l的方程为___________.
参考答案:1.B【分析】方法一:求出集合后可求.【详解】[方法一]:直接法因为,故,故选:B.[方法二]:【最优解】代入排除法代入集合,可得,不满足,排除A、D;代入集合,可得,不满足,排除C.故选:B.【整体点评】方法一:直接解不等式,利用交集运算求出,是通性通法;方法二:根据选择题特征,利用特殊值代入验证,是该题的最优解. 2.C【分析】由两角和差的正余弦公式化简,结合同角三角函数的商数关系即可得解.【详解】[方法一]:直接法由已知得:,即:,即:所以故选:C[方法二]:特殊值排除法解法一:设β=0则sinα +cosα =0,取,排除A, B;再取α=0则sinβ +cosβ= 2sinβ,取β,排除D;选C.[方法三]:三角恒等变换 所以即故选:C. 3. 【分析】分和两种情况,当时设切点为,求出函数的导函数,即可求出切线的斜率,从而表示出切线方程,再根据切线过坐标原点求出,即可求出切线方程,当时同理可得;【详解】[方法一]:化为分段函数,分段求分和两种情况,当时设切点为,求出函数导函数,即可求出切线的斜率,从而表示出切线方程,再根据切线过坐标原点求出,即可求出切线方程,当时同理可得;解: 因为,当时,设切点为,由,所以,所以切线方程为,又切线过坐标原点,所以,解得,所以切线方程为,即;当时,设切点为,由,所以,所以切线方程为,又切线过坐标原点,所以,解得,所以切线方程为,即;故答案为:;[方法二]:根据函数的对称性,数形结合当时,设切点为,由,所以,所以切线方程为,又切线过坐标原点,所以,解得,所以切线方程为,即;因为是偶函数,图象为:所以当时的切线,只需找到关于y轴的对称直线即可.[方法三]:因为,当时,设切点为,由,所以,所以切线方程为,又切线过坐标原点,所以,解得,所以切线方程为,即;当时,设切点为,由,所以,所以切线方程为,又切线过坐标原点,所以,解得,所以切线方程为,即;故答案为:;. 4.【分析】令的中点为,设,,利用点差法得到,设直线,,,求出、的坐标,再根据求出、,即可得解;【详解】[方法一]:弦中点问题:点差法令的中点为,设,,利用点差法得到,设直线,,,求出、的坐标,再根据求出、,即可得解;解:令的中点为,因为,所以,设,,则,,所以,即所以,即,设直线,,,令得,令得,即,,所以,即,解得或(舍去),又,即,解得或(舍去),所以直线,即;故答案为:[方法二]:直线与圆锥曲线相交的常规方法解:由题意知,点既为线段的中点又是线段MN的中点,设,,设直线,,,则,,,因为,所以联立直线AB与椭圆方程得消掉y得其中,∴AB中点E的横坐标,又,∴∵,,∴,又,解得m=2所以直线,即[方法三]:令的中点为,因为,所以,设,,则,,所以,即所以,即,设直线,,,令得,令得,即,,所以,即,解得或(舍去),又,即,解得或(舍去),所以直线,即;故答案为:
相关试卷
这是一份2023全国百强名校高三数学每日一题含答案,共17页。试卷主要包含了选择题,多选题,填空题,解答题等内容,欢迎下载使用。
这是一份2023高考数学真题一题多解,共29页。
这是一份高考数学二轮专题复习——导数一题多解,共143页。