所属成套资源:全套2023届高三下学期模拟考试数学试题含解析
2023年全国高考数学真题重组模拟卷(五)含答案
展开
这是一份2023年全国高考数学真题重组模拟卷(五)含答案,共23页。
绝密★启用前冲刺2023年高考数学真题重组卷05新高考地区专用(原卷版)注意事项: 1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、单项选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.(2022年高考北京卷)已知集合,,则( )A. B.C. D.2.(2022年高考全国I卷)若,则( )A. B. C.1 D.23.(2022年高考全国I卷)在中,点D在边AB上,.记,则( )A. B. C. D.4.(2020高考全国新课标II卷)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A.3699块 B.3474块 C.3402块 D.3339块5.(2020年高考全国II卷)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有( )A.2种 B.3种 C.6种 D.8种6.(2021年高考天津卷)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为,两个圆锥的高之比为,则这两个圆锥的体积之和为( )A. B. C. D.7.(2021年高考全国乙卷)设是椭圆的上顶点,若上的任意一点都满足,则的离心率的取值范围是( )A. B. C. D.8.(2021年高考全国II卷)已知函数的定义域为,为偶函数,为奇函数,则( )A. B. C. D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.(2022年高考全国I卷)已知正方体,则( )A.直线与所成的角为 B.直线与所成的角为C.直线与平面所成的角为 D.直线与平面ABCD所成的角为10.(2020年高考全国II卷)已知a>0,b>0,且a+b=1,则( )A. B.C. D.11.(2022年高考全国I卷)已知函数,则( )A.有两个极值点 B.有三个零点C.点是曲线的对称中心 D.直线是曲线的切线12.(2022年高考全国乙卷)双曲线C的两个焦点为,以C的实轴为直径的圆记为D,过作D的切线与C交于M,N两点,且,则C的离心率为( )A. B. C. D.三、填空题:本题共4小题,每小题5分,共20分.13.(2021年高考全国甲卷)已知函数的部分图像如图所示,则_______________.14.(2021年高考天津卷)甲、乙两人在每次猜谜活动中各猜一个谜语,若一方猜对且另一方猜错,则猜对的一方获胜,否则本次平局,已知每次活动中,甲、乙猜对的概率分别为和,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影响,则一次活动中,甲获胜的概率为____________,3次活动中,甲至少获胜2次的概率为______________.15.(2020年高考全国II卷)已知直四棱柱ABCD–A1B1C1D1的棱长均为2,∠BAD=60°.以为球心,为半径的球面与侧面BCC1B1的交线长为________.16.(2021年高考北京卷)已知函数,给出下列四个结论:①若,恰 有2个零点;②存在负数,使得恰有1个零点;③存在负数,使得恰有3个零点;④存在正数,使得恰有3个零点.其中所有正确结论的序号是_______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(2020年高考全国II卷)在①,②,③这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求的值;若问题中的三角形不存在,说明理由.问题:是否存在,它的内角的对边分别为,且,,________?注:如果选择多个条件分别解答,按第一个解答计分.18.(2021年高考全国乙卷)设是首项为1的等比数列,数列满足.已知,,成等差数列.(1)求和的通项公式;(2)记和分别为和的前n项和.证明:.19.(2021高考北京卷)在核酸检测中, “k合1” 混采核酸检测是指:先将k个人的样本混合在一起进行1次检测,如果这k个人都没有感染新冠病毒,则检测结果为阴性,得到每人的检测结果都为阴性,检测结束:如果这k个人中有人感染新冠病毒,则检测结果为阳性,此时需对每人再进行1次检测,得到每人的检测结果,检测结束.现对100人进行核酸检测,假设其中只有2人感染新冠病毒,并假设每次检测结果准确.(I)将这100人随机分成10组,每组10人,且对每组都采用“10合1”混采核酸检测.(i)如果感染新冠病毒的2人在同一组,求检测的总次数;(ii)已知感染新冠病毒的2人分在同一组的概率为.设X是检测的总次数,求X的分布列与数学期望E(X).(II)将这100人随机分成20组,每组5人,且对每组都采用“5合1”混采核酸检测.设Y是检测的总次数,试判断数学期望E(Y)与(I)中E(X)的大小.(结论不要求证明)20.(2020年高考浙江卷 )如图,三棱台ABC—DEF中,平面ACFD⊥平面ABC,∠ACB=∠ACD=45°,DC =2BC. (I)证明:EF⊥DB;(II)求DF与面DBC所成角的正弦值.21.(2021高考全国甲卷)抛物线C的顶点为坐标原点O.焦点在x轴上,直线l:交C于P,Q两点,且.已知点,且与l相切.(1)求C,的方程;(2)设是C上的三个点,直线,均与相切.判断直线与的位置关系,并说明理由.22.(2022年高考全国II卷)已知函数.(1)当时,讨论的单调性;(2)当时,,求a的取值范围;(3)设,证明:.
冲刺2023年高考数学真题重组卷05新高考地区专用(参考答案)123456789101112BDBCCBCBABDABDACAC三、填空题:本题共4小题,每小题5分,共20分.13.【解析】首先确定函数的解析式,然后求解的值即可.14. 15..16.①②④四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.详见解析【解析】方法一:由题意结合所给的条件,利用正弦定理角化边,得到a,b的比例关系,根据比例关系,设出长度长度,由余弦定理得到的长度,根据选择的条件进行分析判断和求解.【详解】[方法一]【最优解】:余弦定理由可得:,不妨设,则:,即.若选择条件①:据此可得:,,此时.若选择条件②:据此可得:,则:,此时:,则:.若选择条件③:可得,,与条件矛盾,则问题中的三角形不存在.[方法二]:正弦定理由,得.由,得,即,得.由于,得.所以.若选择条件①:由,得,得.解得.所以,选条件①时问题中的三角形存在,此时.若选择条件②:由,得,解得,则.由,得,得.所以,选条件②时问题中的三角形存在,此时.若选择条件③:由于与矛盾,所以,问题中的三角形不存在.【整体点评】方法一:根据正弦定理以及余弦定理可得的关系,再根据选择的条件即可解出,是本题的通性通法,也是最优解;方法二:利用内角和定理以及两角差的正弦公式,消去角,可求出角,从而可得,再根据选择条件即可解出.18.(1),;(2)证明见解析.【解析】(1)利用等差数列的性质及得到,解方程即可;(2)利用公式法、错位相减法分别求出,再作差比较即可.【详解】(1)因为是首项为1的等比数列且,,成等差数列,所以,所以,即,解得,所以,所以.(2)[方法一]:作差后利用错位相减法求和,,.设, ⑧则. ⑨由⑧-⑨得.所以.因此.故.[方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得,,①,②①②得 ,所以,所以,所以.[方法三]:构造裂项法 由(Ⅰ)知,令,且,即,通过等式左右两边系数比对易得,所以.则,下同方法二.[方法四]:导函数法设,由于,则.又,所以,下同方法二.【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造,使,求得的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法.19.(1)①次;②分布列见解析;期望为;(2).【解析】(1)①由题设条件还原情境,即可得解;②求出X的取值情况,求出各情况下的概率,进而可得分布列,再由期望的公式即可得解;(2)求出两名感染者在一组的概率,进而求出,即可得解.【详解】(1)①对每组进行检测,需要10次;再对结果为阳性的组每个人进行检测,需要10次;所以总检测次数为20次;②由题意,可以取20,30,,,则的分布列: 所以;(2)由题意,可以取25,30,两名感染者在同一组的概率为,不在同一组的概率为,则.20.(I)证明见解析;(II)【解析】()方法一:作交于,连接,由题意可知平面,即有,根据勾股定理可证得,又,可得,,即得平面,即证得;(II)方法一:由,所以与平面所成角即为与平面所成角,作于,连接,即可知即为所求角,再解三角形即可求出与平面所成角的正弦值.【详解】()[方法一]:几何证法作交于,连接.∵平面平面,而平面平面,平面,∴平面,而平面,即有.∵,∴.在中,,即有,∴.由棱台的定义可知,,所以,,而,∴平面,而平面,∴.[方法二]【最优解】:空间向量坐标系方法作交于O.∵平面平面,而平面平面,平面,∴平面,以为原点,建立空间直角坐标系如图所示.设OC=1,∵,,∴,∴,∴,,,∴BC⊥BD,又∵棱台中BC//EF,∴EF⊥BD;[方法三]:三余弦定理法 公众号:高中试卷君∵平面ACFD平面ABC,∴,∴,又∵DC =2BC.∴,即,又∵,∴.(II)[方法一]:几何法因为,所以与平面所成角即为与平面所成角.作于,连接,由(1)可知,平面,因为所以平面平面,而平面平面,平面,∴平面.即在平面内的射影为,即为所求角.在中,设,则,,∴.故与平面所成角的正弦值为.[方法二]【最优解】:空间向量坐标系法设平面BCD的法向量为,由()得,,∴令,则,,,,,由于,∴直线与平面所成角的正弦值为. [方法三]:空间向量法以为基底,不妨设,则(由()的结论可得).设平面的法向量为,则由得取,得.设直线与平面所成角为,则直线与平面所成角也为,由公式得.[方法四]:三余弦定理法由,可知H在平面的射影G在的角平分线上.设直线与平面所成角为,则与平面所成角也为.由由()的结论可得,由三余弦定理,得,从而.[方法五]:等体积法设H到平面DBC的距离为h,设,则,设直线与平面所成角为,由已知得与平面所成角也为.由,,求得,所以.【整体评价】()的方法一使用几何方法证明,方法二利用空间直角坐标系方法,简洁清晰,通性通法,确定为最优解;方法三使用了两垂直角的三余弦定理得到,进而证明,过程简洁,确定为最优解(II)的方法一使用几何做法,方法二使用空间坐标系方法,为通性通法,确定为最优解;方法三使用空间向量的做法,避开了辅助线的求作;方法四使用三余弦定理法,最为简洁,确定为最优解;方法五采用等体积转化法,避免了较复杂的辅助线.21.(1)抛物线,方程为;(2)相切,理由见解析【解析】(1)根据已知抛物线与相交,可得出抛物线开口向右,设出标准方程,再利用对称性设出坐标,由,即可求出;由圆与直线相切,求出半径,即可得出结论;(2)方法一:先考虑斜率不存在,根据对称性,即可得出结论;若斜率存在,由三点在抛物线上,将直线斜率分别用纵坐标表示,再由与圆相切,得出与的关系,最后求出点到直线的距离,即可得出结论.【详解】(1)依题意设抛物线,,所以抛物线的方程为,与相切,所以半径为,所以的方程为;(2)[方法一]:设若斜率不存在,则方程为或,若方程为,根据对称性不妨设,则过与圆相切的另一条直线方程为,此时该直线与抛物线只有一个交点,即不存在,不合题意;若方程为,根据对称性不妨设则过与圆相切的直线为,又,,此时直线关于轴对称,所以直线与圆相切;若直线斜率均存在,则,所以直线方程为,整理得,同理直线的方程为,直线的方程为,与圆相切,整理得,与圆相切,同理所以为方程的两根,,到直线的距离为:,所以直线与圆相切;综上若直线与圆相切,则直线与圆相切.[方法二]【最优解】:设.当时,同解法1.当时,直线的方程为,即.由直线与相切得,化简得,同理,由直线与相切得.因为方程同时经过点,所以的直线方程为,点M到直线距离为.所以直线与相切.综上所述,若直线与相切,则直线与相切.【整体点评】第二问关键点:过抛物线上的两点直线斜率只需用其纵坐标(或横坐标)表示,将问题转化为只与纵坐标(或横坐标)有关;法一是要充分利用的对称性,抽象出与关系,把的关系转化为用表示,法二是利用相切等条件得到的直线方程为,利用点到直线距离进行证明,方法二更为简单,开拓学生思路22.(1)的减区间为,增区间为.(2);(3)见解析【解析】(1)求出,讨论其符号后可得的单调性.(2)设,求出,先讨论时题设中的不等式不成立,再就结合放缩法讨论符号,最后就结合放缩法讨论的范围后可得参数的取值范围.(3)由(2)可得对任意的恒成立,从而可得对任意的恒成立,结合裂项相消法可证题设中的不等式.【详解】(1)当时,,则,当时,,当时,,故的减区间为,增区间为.(2)设,则,又,设,则,若,则,因为为连续不间断函数,故存在,使得,总有,故在为增函数,故,故在为增函数,故,与题设矛盾.若,则,下证:对任意,总有成立,证明:设,故,故在上为减函数,故即成立.由上述不等式有,故总成立,即在上为减函数,所以.当时,有, 所以在上为减函数,所以.综上,.(3)取,则,总有成立,令,则,故即对任意的恒成立.所以对任意的,有,整理得到:,故,故不等式成立.【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.
相关试卷
这是一份2023年全国高考数学真题重组模拟卷(五)含解析,共37页。
这是一份2023年全国高考数学真题重组模拟卷(一)PDF版含答案,共18页。
这是一份2023年全国高考数学真题重组模拟卷(五)PDF版含答案,共19页。