


2023年上海市高考考前信息必刷模拟数学卷(二)含答案
展开绝密★启用前
2023年高考数学考前信息必刷卷02
上海专用
上海地区考试题型按往年惯例为12(填空题)+4(单选题)+5(解答题),导数和统计学中的随机变量分布、成对数据的统计分析是新教材新增加的内容。值得注意的是新增加空间向量与立体几何单独作为一章来学习。
导数会向全国新高考卷一样,在压轴题中的分量很大,至少在原来的出题模式中会有很大的渗透;仍然会对学生的抽象思维能力,综合解题能力,数学在实际生活中的运用能力,学生阅读提炼信息的能力进行考查。
空间向量与立体几何也会像全国新高考一样加大难度进行考查。
1.函数、数列、基本不等式、三角函数与解三角形依然是高考的重点、热点;
2.空间向量与立体几何很可能会在选填中增加难度,尤其会涉及一些动态问题,来进行一个综合判断选填与填空,对空间位置关系,简单几何体的表面积体积(之前的高考热点)等综合考查;
3.解答压轴题导数会渗透在原来的热门题型函数、数列的新定义题型中。
2023年高考数学考前信息必刷卷02
(考试时间:120分钟 试卷满分:150分)
一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)
1.若复数满足(其中是虚数单位),则______.
2.已知随机变量,且,则___________
3.已知函数,则不等式的解集是__________.
4.若过两点的直线l与圆相切,则_____________.
5.从的二项展开式的所有二项式系数中任取一个,则取到的二项式系数为奇数的概率为________(结果用最简分数表示).
6.若,则三棱锥O—ABC的体积为___________.
7.设幂函数,数列满足:,且(),则数列的通项__.
8.已知函数的图像向右平移个单位,可得到函数的图像,则 =___________.
9.在中,角、、的对边分别为、、,设的面积为,若,则的最大值为______.
10.已知关于的方程有唯一实数根,则实数的取值范围为______.
11.已知平面向量, 和单位向量, 满足, , , 当变化时, 的最小值为, 则的最大值为__________.
12.已知定义在R上的函数满足,当时,.设在区间()上的最小值为.若存在,使得有解,则实数的取值范围是______.
二、选择题(本题共有4题,满分20分,每题5分)每题有且只有一个正确选项,考生应在答题纸的位置,将代表正确选项的小方格涂黑.
13.设,,若是的充分条件,则实数的取值范围是( )
A. B. C. D.
14.已知角的终边不在坐标轴上,则下列一定成等比数列的是( )
A. B.
C. D.
15.在四棱锥中,底面是直角梯形,,,侧面底面.若,则
A.当 时,平面BPC⊥平面PCD
B.当时,平面APD⊥平面PCD
C.对任意,直线PA与底面ABCD都不垂直
D.存在,使直线PD与直线AC垂直
16.已知抛物线为其焦点,为其准线,过任作一条直线交抛物线于两点,分别为在上的射影,为的中点,给出下列命题:①;②;③;④与的交点在轴上;⑤与交于原点.其中真命题的个数为( )
A.2个 B.3个 C.4个 D.5个
三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.
17.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题8分.
17.如图,在四棱锥中,底面为平行四边形,平面为中点.
(1)求证:平面;
(2)若,求二面角的大小.
18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题8分.
已知函数是定义域为的奇函数.
(1)求实数的值,并证明在上单调递增;
(2)已知且,若对于任意的、,都有恒成立,求实数的取值范围.
19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题8分.
近年来,为“加大城市公园绿地建设力度,形成布局合理的公园体系”,许多城市陆续建起众多“口袋公园”、现计划在一块边长为200米的正方形的空地上按以下要求建造“口袋公园”、如图所示,以中点A为圆心,为半径的扇形草坪区,点在弧BC上(不与端点重合),AB、弧BC、CA、PQ、PR、RQ为步行道,其中PQ与AB垂直,PR与AC垂直.设.
(1)如果点P位于弧BC的中点,求三条步行道PQ、PR、RQ的总长度;
(2)“地摊经济”对于“拉动灵活就业、增加多源收入、便利居民生活”等都有积极作用.为此街道允许在步行道PQ、PR、RQ开辟临时摊点,积极推进“地摊经济”发展,预计每年能产生的经济效益分别为每米5万元、5万元及5.9万元.则这三条步行道每年能产生的经济总效益最高为多少?(精确到1万元)
20.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题6分,第3小题满分6分.
已知椭圆过点,分别为椭圆C的左、右焦点且.
(1)求椭圆C的方程;
(2)过P点的直线与椭圆C有且只有一个公共点,直线平行于OP(O为原点),且与椭圆C交于两点A、B,与直线交于点M(M介于A、B两点之间).
(i)当面积最大时,求的方程;
(ii)求证:,并判断,的斜率是否可以按某种顺序构成等比数列.
21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题6分,第3小题满分8分.
定义:如果函数和的图像上分别存在点M和N关于x轴对称,则称函数和具有C关系.
(1)判断函数和是否具有C关系;
(2)若函数和不具有C关系,求实数a的取值范围;
(3)若函数和在区间上具有C关系,求实数m的取值范围.
绝密★启用前
2023年高考数学考前信息必刷卷02
上海专用
上海地区考试题型按往年惯例为12(填空题)+4(单选题)+5(解答题),导数和统计学中的随机变量分布、成对数据的统计分析是新教材新增加的内容。值得注意的是新增加空间向量与立体几何单独作为一章来学习。
导数会向全国新高考卷一样,在压轴题中的分量很大,至少在原来的出题模式中会有很大的渗透;仍然会对学生的抽象思维能力,综合解题能力,数学在实际生活中的运用能力,学生阅读提炼信息的能力进行考查。
空间向量与立体几何也会像全国新高考一样加大难度进行考查。
1.函数、数列、基本不等式、三角函数与解三角形依然是高考的重点、热点;
2.空间向量与立体几何很可能会在选填中增加难度,尤其会涉及一些动态问题,来进行一个综合判断选填与填空,对空间位置关系,简单几何体的表面积体积(之前的高考热点)等综合考查;
3.解答压轴题导数会渗透在原来的热门题型函数、数列的新定义题型中。
2023年高考数学考前信息必刷卷02
(考试时间:120分钟 试卷满分:150分)
一、填空题
1.
【答案】
2.
【答案】
3.
【答案】
4.
【答案】或
5.
【答案】
6.
【答案】
7.
【答案】
8.
【答案】
9.
【答案】
10.
【答案】或
11.
【答案】
12.
【答案】
二、单选题
13.
【答案】C
14.
【答案】D
15.
【答案】A
16.
【答案】D
三、解答题
17.
【答案】(1)证明见解析
(2)
【分析】(1)连接与交于点,通过证明线线平行及线面平行的判定定理即可证明;
(2)由题上所给的长度及角度,和平面,根据余弦定理求出二面角中各个棱长,过分别在平面,平面中做的垂线,发现垂足为同一点,根据余弦定理求二面角的大小的余弦值,进而求出二面角的大小即可.
【解析】(1)证明:连接与交于点,连接如图所示:
为平行四边形,
为中点,
为平行四边形,
为中点,
为中点,
所以,
在平面外,平面,
平面;
(2)由题知,
是菱形,,,
在中由余弦定理得:
,
解得:,
平面,
,
由勾股定理可得:
,
是中点,
则在直角三角形中,,
,
在中,由余弦定理得:
,
在中,由余弦定理得:
,
,
,
,
,
与为全等的两个等腰三角形,
取中点为,连接, 如图所示:
,
即为二面角的大小,
,
,
,
在中由余弦定理得:
,
故二面角的大小为.
18.
【答案】(1),证明见解析
(2)
【分析】(1)由奇函数的性质可得出,求出,利用函数奇偶性的定义可验证函数为奇函数,再利用函数单调性的定义可证得结论成立;
(2)由题意可得,可得出,求得,分、,根据已知条件可得出关于的不等式,综合可得出实数的取值范围.
【解析】(1)解:因为函数是定义域为的奇函数,
则,解得,此时,
对任意的,,即函数的定义域为,
,即函数为奇函数,合乎题意,
任取、且,则,
所以,,则,
所以,函数在上单调递增.
(2)解:由(1)可知,函数在上为增函数,
对于任意的、,都有,则,
,
因为,则.
当时,则有,解得;
当时,则有,此时.
综上所述,实数的取值范围是.
19.
【答案】(1)(米)
(2)2022万元
【分析】(1)根据图依次求出三条线段长度即可求出总长度;
(2)将PQ、PR、RQ三边通过图中的关系用关于的等式表示,再记经济总效益,将进行表示,通过辅助角公式化简求出最值即可.
【解析】(1)解:由题,
,同理,故,
由于点P位于弧BC的中点,所以点P位于的角平分线上,
则,
,
因为,,
所以为等边三角形,
则,
因此三条街道的总长度为(米).
(2)由图可知,
,
,
,
在中由余弦定理可知:
,
则,
设三条步行道每年能产生的经济总效益,则
,
当即时取最大值,
最大值为.
答:三条步行道每年能产生的经济总效益最高约为2022万元.
20.
【答案】(1);(2)(i);(ii)证明见解析,不可能构成等比数列.
【解析】(1)设,.求出的坐标,根据,求出.把点代入椭圆方程,结合,求出,即得椭圆C的方程;
(2)(i)设方程为,.把直线的方程代入椭圆方程,由韦达定理、弦长公式求出.由点到直线的距离公式求出点P到的距离,则,根据基本不等式求面积的最大值,即求的方程;(ii)要证结论成立,只须证明,即证直线为的平分线,转化成证明.
又与C有一个公共点,即为椭圆的切线,可求,又.由题意,,,四个数按某种顺序成等比数列,推出矛盾,故不可能构成等比数列.
【解析】(1)设,,
则,.
,.
又在椭圆上,故,
又,解得,,
故所求方程为.
(2)(i)由于,
设方程为,.
由,消y整理得,
,
则
.
又点P到的距离,
.
当且仅当,,即时,等号成立.
故直线AB的方程为:.
(ⅱ)要证结论成立,只须证明:,
由角平分线性质即证:直线为的平分线,
转化成证明:.
因为
因此结论成立.
又与C有一个公共点,即为椭圆的切线,
由得
令,,
则,
所以,所以,
故所研究的4条直线的斜率分别为,,,,
若这四个数成等比数列,且其公比记为q,
则应有或,或.
因为不成立,所以,
而当时,,,
此时直线PB与重合,不合题意,
故,,PA,PB的斜率无论怎样排序都不可能构成等比数列.
【点睛】本题考查椭圆的方程,考查弦长公式、点到直线的距离公式、基本不等式和等比数列等知识,考查学生的逻辑推理能力和运算能力,综合性强,属于难题.
21.
【答案】(1)是
(2)
(3)
【分析】(1)根据C关系的理解,令,解得,从而得以判断;
(2)利用换元法,结合二次函数的性质得到在上恒成立,分类讨论与,利用基本不等式即可求得a的取值范围;
(3)构造函数,将问题转化为在上存在零点,分类讨论与,利用导数与函数的关系证得时,在上有零点,从而得解.
【解析】(1)与是具有C关系,理由如下:
根据定义,若与具有C关系,则在与的定义域的交集上存在,使得,
因为,,,
所以,
令,即,解得,
所以与具有C关系.
(2)令,
因为,,所以,
令,则,故,
因为与不具有C关系,所以在上恒为负或恒为正,
又因为开口向下,所以在上恒为负,即在上恒成立,
当时,显然成立;
当时,在上恒成立,
因为,当且仅当,即时,等号成立,
所以,所以,
综上:,即.
(3)因为和,
令,则,
因为与在上具有C关系,所以在上存在零点,
因为,
当且时,因为,所以,
所以在上单调递增,则,
此时在上不存在零点,不满足题意;
当时,显然当时,,
当时,因为在上单调递增,且,
故在上存在唯一零点,设为,则,
所以当;当;又当时,,
所以在上单调递减,在上单调递增,在上存在唯一极小值点,
因为,所以,
又因为,所以在上存在唯一零点,
所以函数与在上具有C关系,
综上:,即.
【点睛】关键点睛:本题解题的关键是理解新定义,得到与具有C关系,则在定义域上存在,使得,从而得解.
2023年上海市高考考前信息必刷模拟数学卷(一)含解析: 这是一份2023年上海市高考考前信息必刷模拟数学卷(一)含解析,共29页。试卷主要包含了当时,则,等内容,欢迎下载使用。
2023年上海市高考数学考前信息必刷卷(四)含答案: 这是一份2023年上海市高考数学考前信息必刷卷(四)含答案,共19页。试卷主要包含了导数在解答题中的应用会加入等内容,欢迎下载使用。
2023年上海市高考数学考前信息必刷卷(三)含答案: 这是一份2023年上海市高考数学考前信息必刷卷(三)含答案,共20页。试卷主要包含了空间向量与立体几何难度会加大,8##等内容,欢迎下载使用。