数学八年级上册14.1.4 整式的乘法优秀当堂达标检测题
展开新人教版初中数学学科教材分析
数学是一门研究数量关系和空间形式的科学,具有严密的符号体系,独特的公式结构,形象的图像语言。它有三个显著的特点:高度抽象,逻辑严密,广泛应用。
1.高度抽象性:数学的抽象,在对象上、程度上都不同于其它学科的抽象,数学是借助于抽象建立起来并借助于抽象发展的。
2.严密逻辑性: 数学具有严密的逻辑性,任何数学结论都必须经过逻辑推理的严格证明才能被承认。任何一门科学,都要应用逻辑工具,都有它严谨的一面。
3.广泛应用性:数学作为一种工具或手段,几乎在任何一门科学技术及一切社会领域中都被运用。各门科学的“数学化”,是现代科学发展的一大趋势。
1.同底数幂的乘法
一般地,对于任意底数a与任意正整数m,n,am·an=·==.
语言叙述:同底数幂相乘,底数不变,指数__________.
【拓展】(1)同底数幂的乘法法则的推广:三个或三个以上同底数幂相乘,法则也适用.
(m,n,…,p都是正整数).
(2)同底数幂的乘法法则的逆用:am+n=am·an(m,n都是正整数).
2.幂的乘方
(1)幂的乘方的意义:
幂的乘方是指几个相同的幂相乘,如(a5)3是三个a5相乘,读作a的五次幂的三次方,(am)n是n个am相乘,读作a的m次幂的n次方.
(2)幂的乘方法则:
一般地,对于任意底数a与任意正整数m,n,
.
语言叙述:幂的乘方,底数不变,指数__________.
【拓展】(1)幂的乘方的法则可推广为(m,n,p都是正整数).
(2)幂的乘方法则的逆用:(m,n都是正整数).
3.积的乘方
(1)积的乘方的意义:
积的乘方是指底数是乘积形式的乘方.如(ab)3,(ab)n等.
(积的乘方的意义)
=(a·a·a)·(b·b·b)(乘法交换律、结合律)
=a3b3.
积的乘方法则:
一般地,对于任意底数a,b与任意正整数n,
.
因此,我们有.
语言叙述:积的乘方,等于把积的每一个因式分别__________,再把所得的幂相乘.
4.单项式与单项式相乘
法则:一般地,单项式与单项式相乘,把它们的系数、同底数幂分别__________,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.
(1)只在一个单项式里含有的字母,要连同它的指数写在积里,注意不要把这个因式遗漏.
(2)单项式与单项式相乘的乘法法则对于三个及以上的单项式相乘同样适用.
(3)单项式乘单项式的结果仍然是单项式.
【注意】(1)积的系数等于各项系数的积,应先确定积的符号,再计算积的绝对值.
(2)相同字母相乘,是同底数幂的乘法,按照“底数不变,指数相加”进行计算.
5.单项式与多项式相乘
法则:一般地,单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积__________.用式子表示:m(a+b+c)=ma+mb+mc(m,a,b,c都是单项式).
【注意】(1)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同,可以以此来检验在运算中是否漏乘某些项.
(2)计算时要注意符号问题,多项式中每一项都包括它前面的符号,同时还要注意单项式的符号.
(3)对于混合运算,应注意运算顺序,有同类项必须合并,从而得到最简结果.
6.多项式与多项式相乘
(1)法则:一般地,多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积__________.
(2)多项式与多项式相乘时,要按一定的顺序进行.例如(m+n)(a+b+c),可先用第一个多项式中的每一项与第二个多项式相乘,得m(a+b+c)与n(a+b+c),再用单项式乘多项式的法则展开,即
(m+n)(a+b+c)=m(a+b+c)+n(a+b+c)=ma+mb+mc+na+nb+nc.
【注意】(1)运用多项式乘法法则时,必须做到不重不漏.
(2)多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积.
7.同底数幂的除法
同底数幂的除法法则:
一般地,我们有(a≠0,m,n都是正整数,并且m>n).
语言叙述:同底数幂相除,底数不变,指数__________.
【拓展】(1)同底数幂的除法法则的推广:当三个或三个以上同底数幂相除时,也具有这一性质,例如:(a≠0,m,n,p都是正整数,并且m>n+p).
(2)同底数幂的除法法则的逆用:(a≠0,m,n都是正整数,并且m>n).
8.零指数幂的性质
零指数幂的性质:
同底数幂相除,如果被除式的指数等于除式的指数,例如am÷am,根据除法的意义可知所得的商为1.另一方面,如果依照同底数幂的除法来计算,又有am÷am=am-m=a0.
于是规定:a0=1(a≠0).
语言叙述:任何不等于0的数的0次幂都等于__________.
【注意】(1)底数a不等于0,若a=0,则零的零次幂没有意义.
(2)底数a可以是不为零的单顶式或多项式,如50=1,(x2+y2+1)0=1等.
(3)a0=1中,a≠0是极易忽略的问题,也易误认为a0=0.
9.单项式除以单项式
单项式除以单项式法则:一般地,单项式相除,把系数与同底数幂分别__________作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.
单项式除以单项式法则的实质是将单项式除以单项式转化为同底数幂的除法运算,运算结果仍是单项式.
【归纳】该法则包括三个方面:(1)系数相除;(2)同底数幂相除;(3)只在被除式里出现的字母,连同它的指数作为商的一个因式.
【注意】可利用单项式相乘的方法来验证结果的正确性.
10.多项式除以单项式
多项式除以单项式法则:一般地,多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商__________.
【注意】(1)多项式除以单项式是将其化为单项式除以单项式问题来解决,在计算时多项式里的各项要包括它前面的符号.
(2)多项式除以单项式,被除式里有几项,商也应该有几项,不要漏项.
(3)多项式除以单项式是单项式乘多项式的逆运算,可用其进行检验.
K知识参考答案:
1.相加 2.相乘 3.乘方 4.相乘 5.相加 6.相加 7.相减 8.1 9.相除 10.相加
K—重点
幂的运算,整式的乘法,整式的除法
K—难点
多项式与多项式相乘
K—易错
同底数幂的乘法
一、同底数幂的乘法
1.同底数幂的乘法法则只有在底数相同时才能使用.
2.单个字母或数字可以看成指数为1的幂.
3.底数不一定只是一个数或一个字母,也可以是单项式或多项式.
【例1】计算(-a)4·a的结果是
A.-a5 B.a5 C.-a4 D.a4
【答案】B
【解析】(-a)4·a=a4·a=a4+1=a5,故选B.
【例2】计算-(a-b)3(b-a)2的结果为
A.-(b-a)5 B.-(b+a)5 C.(a-b)5 D.(b-a)5
【答案】D
【解析】-(a-b)3(b-a)2=(b-a)3(b-a)2=(b-a)5,故选D.
二、幂的乘方与积的乘方
1.每个因式都要乘方,不能漏掉任何一个因式.
2.要注意系数应连同它的符号一起乘方,尤其是当系数是-1时,不可忽略.
【例3】计算的结果是
A. B. C. D.
【答案】D
【解析】=,故选D.
【例4】下列等式错误的是
A.(2mn)2=4m2n2 B.(-2mn)2=4m2n2
C.(2m2n2)3=8m6n6 D.(-2m2n2)3=-8m5n5
【答案】D
三、整式的乘法
1.单顶式与单顶式相乘,系数是带分数的一定要化成假分数,还应注意混合运算的运算顺序:先乘方,再乘法,最后加减.有同类顶的一定要合并同类顶.
2.单顶式与多顶式相乘的计算方法,实质是利用分配律将其转化为单项式乘单项式.
【例5】计算:3x2·5x3的结果为
A.3x6 B.15x6 C.5x5 D.15x5
【答案】D
【解析】直接利用单项式乘以单项式运算法则,得3x2·5x3=15x5.故选D.
【例6】下列各式计算正确的是
A.2x(3x-2)=5x2-4x B.(2y+3x)(3x-2y)=9x2-4y2
C.(x+2)2=x2+2x+4 D.(x+2)(2x-1)=2x2+5x-2
【答案】B
【解析】A、2x(3x-2)=6x2-4x,故本选项错误;
B、(2y+3x)(3x-2y)=9x2-4y2,故本选项正确;
C、(x+2)2=x2+4x+4,故本选项错误;
D、(x+2)(2x-1)=2x2+3x-2,故本选项错误.故选B.
四、同底数幂的除法
多顶式除以单项式可转化为单项式除以单顶式的和,计算时应注意逐项相除,不要漏项,并且要注意符号的变化,最后的结果通常要按某一字母升幂或降幂的顺序排列.
【例7】计算:的结果是
A. B. C. D.
【答案】A
【解析】因为.故选A.
【例8】计算:的结果是
A. B. C. D.
【答案】B
【解析】因为.故选B.
五、整式的化简求值
1. 化简求值题一般先按整式的运算法则进行化简,然后再代入求值.
2.在求整式的值时,代入负数时应用括号括起来,作为底数的分数也应用括号括起来.
【例9】先化简,再求值:
,其中,.
【解析】原式
.
当,时,原式.
1.(-5x)2·xy的运算结果是
A.10 B.-10 C.-2x2y D.2x2y
2.已知,n的值是
A. B.2 C. D.
3.如果,则p、q的值为
A., B.,
C., D.,
4.已知,则的值是
A.6 B. C. D.8
5.计算3n·(-9)·3n+2的结果是
A.-33n-2 B.-3n+4 C.-32n+4 D.-3n+6
6.计算的结果为
A. B. C. D.
7.若,则,的值是
A., B.,
C., D.,
8.计算(-x)2x3的结果等于__________.
9.()³=__________.
10.若,,则=__________.
11.计算:(a2b3-a2b2)÷(ab)2=__________.
12.计算:a8÷a4·(a2)2=__________.
13.计算:
(1);
(2).
14.先化简,再求值:
(1)x(x-1)+2x(x+1)-(3x-1)(2x-5),其中x=2;
(2),其中=.
15.(1)已知,,用含a,b的式子表示下列代数式:
①求:的值;
②求:的值.
(2)已知,求x的值.
16.如果,那么单项式等于
A. B. C. D.
17.计算,其结果正确的是
A. B. C. D.
18.计算:=__________.
19.如果展开式中不含项,则__________.
20.已知:2x=3,2y=6,2z=12,试确定x,y,z之间的关系.
21.在一次测试中,甲、乙两同学计算同一道整式乘法:(2x+a)(3x+b),由于甲抄错了第一个多项式中的符号,得到的结果为6x2+11x-10;由于乙漏抄了第二个多项式中的系数,得到的结果为2x2-9x+10.
(1)试求出式子中a,b的值;
(2)请你计算出这道整式乘法的正确结果.
22.(2018·辽宁大连)计算(x3)2的结果是
A.x5 B.2x3 C.x9 D.x6
23.(2018·湖南益阳)下列运算正确的是
A. B.
C. D.
24.(2018·浙江金华)计算(-a)3÷a结果正确的是
A.a2 B.-a2 C.-a3 D.-a4
25.(2018·四川攀枝花)下列运算结果是a5的是
A.a10÷a2 B.(a2)3 C.(-a)5 D.a3·a2
26.(2018·山东聊城)下列计算错误的是
A.a2÷a0·a2=a4 B.a2÷(a0·a2)=1
C.(-1.5)8÷(-1.5)7=-1.5 D.-1.58÷(-1.5)7=-1.5
27.(2018·湖北武汉)计算(a-2)(a+3)的结果是
A.a2-6 B.a2+a-6 C.a2+6 D.a2-a+6
28.(2018·江苏泰州)计算:x·(-2x2)3=__________.
29.(2018·广西玉林)已知ab=a+b+1,则(a-1)(b-1)=__________.
30.(2018·四川达州)已知am=3,an=2,则a2m-n的值为_____.
【解析】3n·(-9)·3n+2=-3n·32·3n+2=-32n+4,故选C.
6.【答案】D
【解析】根据幂的乘方、同底数幂相乘除,可知==.故选D.
7.【答案】B
【解析】因为,所以,,,,故选B.
8.【答案】x5
【解析】根据积的乘方以及同底数幂的乘法法则可得:(-x)2x3=x2·x3=x5.故答案为:x5.
9.【答案】a18
【解析】()³=()³=a18.故答案为:a18.
10.【答案】180
【解析】∴2m=5,2n=6,∴2m+2n=2m·(2n)2=5×62=180.故答案为:180.
11.【答案】
【解析】(a2b3-a2b2)÷(ab)2=(a2b3-a2b2)÷a2b2=a2b3÷a2b2-a2b2÷a2b2=.故答案为:.
12.【答案】a8
【解析】a8÷a4·(a2)2=a4·a4=a8.故答案为:a8.
13.【解析】(1)原式=2x2y+3xy-x2y
=x2y+3xy.
(2)原式=6a3-27a2+9a-8a2+4a
=6a3-35a2+13a.
15.【解析】(1)∵,,
∴,,
.
.
(2)∵,
∴,
∴,
∴,
解得:.
16.【答案】D
【解析】根据“除式=被除式÷商”可得,,故选D.
17.【答案】A
【解析】因为,故选A.
18.【答案】2x-40
【解析】原式=(x2+x-42)-(x2-x-2)=2x-40.故答案为:2x-40.
19.【答案】
【解析】=,由于展开式中不含x的项,∴,∴.故答案为:.
22.【答案】D
【解析】(x3)2=x6,故选D.
23.【答案】D
【解析】A、错误.应该是x3·x3=x6;
B、错误.应该是x8÷x4=x4;
C、错误.(ab3)2=a2b6.
D、正确.故选D.
24.【答案】B
【解析】(-a)3÷a=-a3÷a=-a3-1=-a2,故选B.
25.【答案】D
【解析】A、a10÷a2=a8,错误;
B、(a2)3=a6,错误;
C、(-a)5=-a5,错误;
D、a3·a2=a5,正确.故选D.
26.【答案】D
【解析】∵a2÷a0·a2=a4,∴选项A不符合题意;
∵a2÷(a0·a2)=1,∴选项B不符合题意;
∵(-1.5)8÷(-1.5)7=-1.5,∴选项C不符合题意;
∵-1.58÷(-1.5)7=1.5,∴选项D符合题意.故选D.
初中数学人教版八年级上册14.1 整式的乘法综合与测试练习: 这是一份初中数学人教版八年级上册14.1 整式的乘法综合与测试练习,共5页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中14.1 整式的乘法综合与测试习题: 这是一份初中14.1 整式的乘法综合与测试习题,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中数学人教版八年级上册第十四章 整式的乘法与因式分解14.1 整式的乘法14.1.4 整式的乘法巩固练习: 这是一份初中数学人教版八年级上册第十四章 整式的乘法与因式分解14.1 整式的乘法14.1.4 整式的乘法巩固练习,共5页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。