年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2024高考数学一轮总复习(导与练)第七章第7节 空间距离及立体几何中的探索性问题

    2024高考数学一轮总复习(导与练)第七章第7节 空间距离及立体几何中的探索性问题第1页
    2024高考数学一轮总复习(导与练)第七章第7节 空间距离及立体几何中的探索性问题第2页
    2024高考数学一轮总复习(导与练)第七章第7节 空间距离及立体几何中的探索性问题第3页
    还剩8页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024高考数学一轮总复习(导与练)第七章第7节 空间距离及立体几何中的探索性问题

    展开

    这是一份2024高考数学一轮总复习(导与练)第七章第7节 空间距离及立体几何中的探索性问题,共11页。
    [选题明细表]
    1.如图,已知正方体ABCDA1B1C1D1的棱长为2,E是线段AB的中点.
    (1)证明:BD⊥平面AA1C1C;
    (2)若P是线段BC上的动点,求点P到平面B1DE的距离的取值范围.
    (1)证明:因为四边形ABCD是正方形,
    所以BD⊥AC,
    因为AA1⊥平面ABCD,BD⊂平面ABCD,
    所以AA1⊥BD,
    因为AC∩AA1=A,AC,AA1⊂平面AA1C1C,
    所以BD⊥平面AA1C1C.
    (2)解:以D为坐标原点,分别以DA,DC,DD1所在直线为x轴、y轴、
    z轴建立空间直角坐标系,
    则D(0,0,0),E(2,1,0),B1(2,2,2),
    设P(a,2,0)(0≤a≤2),
    则DP→=(a,2,0),DE→=(2,1,0),DB1→=(2,2,2),
    设平面B1DE的法向量为n=(x,y,z),
    由DE→·n=0,DB1→·n=0,
    则2x+y=0,2x+2y+2z=0,
    令x=1,则y=-2,z=1,则n=(1,-2,1).
    设点P到平面B1DE的距离为h,
    所以h=|DP→·n||n|=|a-4|6=66(4-a)∈[63,263],
    所以点P到平面B1DE的距离的取值范围是[63,263].
    2.如图,在三棱柱ABCA1B1C1中,AA1⊥底面ABC,AB⊥BC,AB=1,BC=2,
    AA1=3.
    (1)求直线A1C与AB1所成角的余弦值;
    (2)设M为AC的中点,在平面BCC1内找一点N,使得MN⊥平面A1BC,
    求点N到平面ABC和平面ABB1的距离.
    解:(1)根据题设可知AB,BC,BB1两两垂直,以B为坐标原点,分别以BA,
    BC,BB1所在直线为x轴、y轴、z轴,建立如图所示的空间直角坐标系,
    则B(0,0,0),A(1,0,0),B1(0,0,3),A1(1,0,3),C(0,2,0),
    所以AB1→=(-1,0,3),A1C→=(-1,2,-3),
    所以cs =AB1→·A1C→|AB1→||A1C→|=1-32×8=-24,
    所以直线A1C与AB1所成角的余弦值为24.
    (2)由条件知M(12,1,0).因为点N在平面BCC1内,可设其坐标为N(0,a,b),
    则MN→=(-12,a-1,b).
    因为MN⊥平面A1BC,
    所以MN⊥BC,MN⊥BA1,
    由(1)可得BC→=(0,2,0),BA1→=(1,0,3),
    所以MN→·BC→=2(a-1)=0,MN→·BA1→=-12+3b=0,
    解得a=1,b=36,
    所以点N(0,1,36),其到平面ABC的距离为36,到平面ABB1的距离为1.
    3.如图,在四棱锥PABCD中,底面ABCD是边长为2的正方形,PB⊥BC,
    PD⊥CD,且PA=2,E为PD的中点.
    (1)求证:PA⊥平面ABCD;
    (2)求直线PC与平面ACE所成角的正弦值;
    (3)在线段BC上是否存在点F,使得点E到平面PAF的距离为255?若存在,确定点F的位置;若不存在,请说明理由.
    (1)证明:因为四边形ABCD为正方形,
    则BC⊥AB,CD⊥AD,
    因为PB⊥BC,BC⊥AB,PB∩AB=B,PB,AB⊂平面PAB,所以BC⊥平面PAB.
    因为PA⊂平面PAB,所以PA⊥BC.
    因为PD⊥CD,CD⊥AD,PD∩AD=D,
    PD,AD⊂平面PAD.
    所以CD⊥平面PAD.
    因为PA⊂平面PAD,
    所以PA⊥CD,
    因为BC∩CD=C,BC,CD⊂平面ABCD,
    所以PA⊥平面ABCD.
    (2)解:因为PA⊥平面ABCD,AB⊥AD,以点A为坐标原点,AB,AD,AP所在直线分别为x轴、y轴、z轴建立如图所示的空间直角坐标系,
    则A(0,0,0),C(2,2,0),P(0,0,2),E(0,1,1),
    设平面ACE的法向量为m=(x,y,z),
    则AC→=(2,2,0),AE→=(0,1,1),PC→=(2,2,-2),
    由m·AC→=2x+2y=0,m·AE→=y+z=0,
    取y=1,可得m=(-1,1,-1),
    cs=m·PC→|m||PC→|=23×23=13,
    所以直线PC与平面ACE所成角的正弦值为13.
    (3)解:设点F(2,t,0)(0≤t≤2),设平面PAF的法向量为n=(a,b,c),
    AF→=(2,t,0),AP→=(0,0,2),
    由n·AF→=2a+tb=0,n·AP→=2c=0,
    取a=t,则n=(t,-2,0),
    所以点E到平面PAF的距离为d=|AE→·n||n|=2t2+4=255,因为0≤t≤2,
    所以t=1.因此,当点F为线段BC的中点时,点E到平面PAF的距离为255.
    4.(2022·江苏苏州调研)如图,在直三棱柱ABCA1B1C1中,△ABC是以BC为斜边的等腰直角三角形,AA1=AB,点D,E分别为棱BC,B1C1上的点,且BDBC=C1EC1B1=t(0

    相关试卷

    2024年高考数学第一轮复习专题训练81练第七章 §7.8 空间距离及立体几何中的探索问题:

    这是一份2024年高考数学第一轮复习专题训练81练第七章 §7.8 空间距离及立体几何中的探索问题,共3页。

    2024高考数学一轮复习讲义(步步高版)第七章 §7.8 空间距离及立体几何中的探索问题:

    这是一份2024高考数学一轮复习讲义(步步高版)第七章 §7.8 空间距离及立体几何中的探索问题,共17页。试卷主要包含了))等内容,欢迎下载使用。

    新高考数学一轮复习讲义 第7章 §7.8 空间距离及立体几何中的探索性问题:

    这是一份新高考数学一轮复习讲义 第7章 §7.8 空间距离及立体几何中的探索性问题,共19页。试卷主要包含了揣摩例题,精练习题,加强审题的规范性,重视错题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map