中考数学一轮突破 基础过关 第6讲分式
展开
这是一份中考数学一轮突破 基础过关 第6讲分式,共7页。学案主要包含了分式,分式的基本性质及运算规律等内容,欢迎下载使用。
第6讲 分 式课标要求 了解分式和最简分式的概念,能利用分式的基本性质进行约分和通分;能进行简单的分式加、减、乘、除运算.考情分析 该内容主要是以选择题、填空题、化简求值的形式来考查,分值为3~9分.主要考点为分式有意义的条件、分式的加减、分式的乘除法、分式的混合运算等.尤其是分式的混合运算几乎各地市每年都考,分值为4~6分.预测2021年中考以上考点依然是热点,建议加强理解概念,熟练运算法则,并加以练习巩固.一、分式1. 概念:形如(A,B是整式,且B中含有________,________≠0)的式子,叫做分式.其中A叫做分式的________,B叫做分式的________.2. ________和________统称为有理式.3. 当________时,分式无意义,反之当________时,分式有意义.4. 当________且________时,分式的值为0.二、分式的基本性质及运算规律1. 分式的基本性质分式的分子和分母都乘以(或除以)同一个________整式,分式的值不变.即=,=(C≠0),其中A,B,C均为整式. 2. 分式基本性质的运用(1)约分:把一个分式分子与分母的________约去.为此,首先要找出分子与分母的________.最简分式:分子与分母中不再含有________的分式称为最简分式.(2)通分:把几个异分母的分式分别化为与原来的分式相等的________的分式.通分的关键是确定几个分式的________,通常取各分母的所有因式的______________作为公分母(叫做最简公分母).3. 分式的运算(1)加减法:±=,±=.(2)乘除法:·=,÷=·=.(3)乘方:=(b≠0,n为正整数).(4)分式的混合运算:按先算________,再算________,最后算________这样的顺序进行.如遇到括号,先算括号里面的.运算结果必须是________分式或整式. 分式有意义的条件 (柳州,第15小题,3分) 分式中,x的取值范围是________.【思路点拨】若分式有意义,则分母不等于零.小结要透彻理解分式的概念,应从以下三个方面考虑:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零. 当x=________时,分式无意义., 分式的化简求值(混合运算)类型一 分式的加减法 (百色,第20小题,6分)已知a2=19,求--的值. 类型二 分式的乘除法(北部湾经济区,第20小题,6分) 先化简再求值:÷,其中x=3 . 类型三 混合运算 (贺州,第20小题,6分)先化简,再求值:÷,其中x=+1.【思路点拨】先根据分式混合运算的法则把原式化简,再把x的值代入进行计算.小结失分警示:①分式的分子或分母是多项式时,一定要把分子或分母看作一个整体,运算时要用括号括起来;②选合适值或选某个范围内的值代入时,要考虑分式有意义的条件. (百色,第20小题,6分) 先化简,再求值:÷ ,其中x=2021 . 1. 下列式子中是分式的是( )A. B. C. D.2. (贵阳)当x=1时,下列分式没有意义的是( B )A. B. C. D.3. 若分式的值为0,则x的值为( )A.-2 B.0 C.2 D.±24. (扬州)分式可变形为( )A. B.-C. D.-5. 把分式中a,b都扩大2倍,则分式的值( )A.扩大4倍 B.扩大2倍C.缩小为原来的 D.不变6. (临沂)计算-a-1的正确结果是( )A. - B.C.- D.7. 分式与的最简公分母是________.8. (梧州)化简:-a=________.9. (吉林)计算:·=________.10. 计算:+=________.11. 约分:(1); (2). 通分:,. (贵港) 先化简再求值:÷ ,其中m=-5 . (遵义)化简式子÷,从0,1,2中取一个合适的数作为x的值代入求值.
第6讲 分 式【基础梳理】一、1.字母 B 分子 分母 2.整式 分式 3.B=0 B≠04.A=0 B≠0二、1.不等于0的2.(1)公因式 公因式 公因式 (2)同分母 公分母 最高次幂的积 3.(4)乘方 乘除 加减 最简【重点突破】[例1]x≠2 [变式1]-2[例2]解:原式=-=-.∵a2=19,∴原式=-=-=-.[例3]解:原式=÷=·=.当x=3时,原式==.[例4]解:原式=·=.当x=+1时,原式==.[变式2]原式=·=.当x=2021时,原式==.【达标检测】1.C 2.B 3.C 4.D 5.D 6.B 7.2a2b2 8.a-49. 10.11.解:(1)==.(2)===.12.解:因为与的最简公分母是:x(x-1)2,所以==,==.13.解:原式=·=. 当m=-5时,原式==.14.解:原式=÷=·=.∵x≠0,2,∴x=1. 当x=1时,原式==-1.
相关学案
这是一份中考数学一轮突破 基础过关 第2讲实数,共9页。学案主要包含了实数的分类,数的开方,二次根式等内容,欢迎下载使用。
这是一份中考数学一轮突破 基础过关 第17讲线段,共12页。学案主要包含了直线,角平分线,余角和补角,相交线与平行线等内容,欢迎下载使用。
这是一份中考数学一轮突破 基础过关 第26讲尺规作图,共12页。学案主要包含了尺规作图,五种基本作图等内容,欢迎下载使用。