初中数学人教版七年级上册第三章 一元一次方程3.4 实际问题与一元一次方程第2课时同步达标检测题
展开第2课时 线段长短的比较与运算
1.会画一条线段等于已知线段,会比较线段的长短;
2.体验两点之间线段最短的性质,并能初步应用;(重点)
3.知道两点之间的距离和线段中点的含义;(重点)
4.在图形的基础上发展数学语言,体会研究几何的意义.
一、情境导入
比较两名同学的身高,可以有几种比较方法?向大家说说你的想法.
二、合作探究
探究点一:线段长度的比较和计算
【类型一】 比较线段的长短
为比较两条线段AB与CD的大小,小明将点A与点C重合使两条线段在一条直线上,点B在CD的延长线上,则( )
A.AB<CD B.AB>CD
C.AB=CD D.以上都有可能
解析:由点A与点C重合使两条线段在一条直线上,点B在CD的延长线上,得AB>CD,故选B.
方法总结:比较线段长短时,叠合法是一种较为常用的方法.
【类型二】 根据线段的中点求线段的长
如图,点C是线段AB上一点,点M是AC的中点,点N是BC的中点,如MC比NC长2cm,AC比BC长( )
A.2cm B.4cm C.1cm D.6cm
解析:点M是AC的中点,点N是BC的中点,∴AC=2MC,BC=2NC,∴AC-BC=(MC-NC)×2=4cm,即AC比BC长4cm,故选B.
方法总结:根据线段的中点表示出线段的长,再根据线段的和、差求未知线段的长度.
【类型三】 已知线段的比求线段的长
如图,B、C两点把线段AD分成2∶3∶4的三部分,点E是线段AD的中点,EC=2cm,求:
(1)AD的长;
(2)AB∶BE.
解析:(1)根据线段的比,可设出未知数,根据线段的和差,可得方程,根据解方程,可得x的值,根据x的值,可得AD的长度;
(2)根据线段的和差,可得线段BE的长,根据比的意义,可得答案.
解:(1)设AB=2x,则BC=3x,CD=4x,
由线段的和差,得AD=AB+BC+CD=9x.
由E为AD的中点,得ED=AD=x.
由线段的和差得
CE=DE-CD=x-4x==2.
解得x=4.∴AD=9x=36(cm);
(2)AB=2x=8(cm),BC=3x=12(cm).
由线段的和差,得BE=BC-CE=12-2=10(cm).
∴AB∶BE=8∶10=4∶5.
方法总结:在遇到线段之间比的问题时,往往设出未知数,列方程解答.
【类型四】 当图形不确定时求线段的长
如果线段AB=6,点C在直线AB上,BC=4,D是AC的中点,那么A、D两点间的距离是( )
A.5 B.2.5 C.5或2.5 D.5或1
解析:本题有两种情形:
(1)当点C在线段AB上时,如图:
AC=AB-BC,又∵AB=6,BC=4,∴AC=6-4=2,D是AC的中点,∴AD=1;
(2)当点C在线段AB的延长线上时,如图:
AC=AB+BC,又∵AB=6,BC=4,∴AC=6+4=10,D是AC的中点,∴AD=5.故选D.
方法总结:解答本题关键是正确画图,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.
探究点二:有关线段的基本事实
如图,把弯曲的河道改直,能够缩短航程,这样做的根据是( )
A.两点之间,直线最短
B.两点确定一条线段
C.两点确定一条直线
D.两点之间,线段最短
解析:把弯曲的河道改直缩短航程的根据是:两点之间,线段最短.故选D.
方法总结:本题考查了线段的性质,熟记两点之间线段最短是解题的关键.
三、板书设计
1.线段的比较与性质
(1)比较线段:度量法和叠合法.
(2)两点之间线段最短.
2.线段长度的计算
(1)中点:把线段AB分成两条相等线段的点.
(2)两点间的距离:两点间线段的长度.
本节课通过比较两个人的高矮这一生活中的实例让学生进行思考,从而引出课题,极大地激发了学生的学习兴趣;并通过动手操作,亲身体验用叠合法比较线段的长短.教师要尝试让学生自主学习,优化课堂教学中的反馈与评价.通过评价,激发学生的求知欲,坚定学生学习的自信心.
人教版七年级上册3.4 实际问题与一元一次方程第1课时综合训练题: 这是一份人教版七年级上册3.4 实际问题与一元一次方程第1课时综合训练题,共2页。试卷主要包含了会画一条等于已知线段的线段等内容,欢迎下载使用。
初中数学人教版七年级上册3.4 实际问题与一元一次方程第1课时达标测试: 这是一份初中数学人教版七年级上册3.4 实际问题与一元一次方程第1课时达标测试,共3页。
人教版七年级上册第四章 几何图形初步4.2 直线、射线、线段第2课时同步达标检测题: 这是一份人教版七年级上册第四章 几何图形初步4.2 直线、射线、线段第2课时同步达标检测题,共13页。试卷主要包含了2 直线、射线、线段, 如图等内容,欢迎下载使用。