2023.4西城区初三一模数学答案
展开
这是一份2023.4西城区初三一模数学答案,共6页。试卷主要包含了5,4等内容,欢迎下载使用。
北 京 市 西 城 区 九 年 级 统 一 测 试 试 卷 数学答案及评分参考 2023.4一、选择题(共16分,每题2分)题号12345678答案BCCBDAC D二、填空题(共16分,每题2分)9.x≥1. 10.. 11.9. 12.x=-1.13.. 14.1.3. 15.. 16.;1,5,1.三、解答题(共68分,第17-20题,每题5分,第21题6分,第22-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)17.解:. =····························································4分 =.······························································5分18.解:解不等式①,得.···················································2分 解不等式②,得.·····················································4分 所以原不等式组的解集为.··············································5分19.解: =····························································2分 =····························································3分∵a是方程的一个根, ∴,即.··························································4分∴原式.······················································5分 20.方法一证明:如图,过点E作MN∥AB. ∴ ∠A=∠AEM.···············································2分 ∵ AB∥CD, ∴ MN∥CD. ∴ ∠C=∠CEM.······················4分 ∵ ∠AEC=∠AEM+∠CEM, ∴ ∠AEC=∠A+∠C. ·················5分 方法二证明:如图,延长AE,交CD于点F. ∵ AB∥CD, ∴ ∠A=∠AFC.·······················2分 ∵ ∠AEC=∠AFC+∠C,···············4分 ∴ ∠AEC=∠A+∠C. ·················5分21.(1)证明:∵ CE∥FB, ∴ ∠BFE=∠CEF. ∵ AD是BC边上的中线, ∴ BD=DC. ∵ ∠BDF=∠CDE, ∴ △BDF≌△CDE. ∴ FB=CE. ∴四边形BFCE是平行四边形.···································3分 (2)①依题意补全图2,如图; ②证明:∵ ∠ABC=∠ACB, ∴ AB=AC. ∵ AD是BC边上的中线, ∴ AD⊥BC. ∵ 四边形BFCE是平行四边形, ∴ 四边形BFCE为菱形.·······································6分
22.解:(1)4.5,4.5;················································2分 (2)<<;························································3分(3)推荐乙,理由略,答案不唯一,合理即可.·························5分23.解:(1)∵ 一次函数的图象由函数的图象平移得到, ∴ ,得到一次函数的解析式为. ∵一次函数的图象过点A(-2,1),∴ ,得到. ∴一次函数的解析式为.············································3分 (2)m≥1.······················································5分24.(1)证明: 连接OD,如图1.∵ DE是⊙O 的切线,切点是D, ∴ OD⊥DE. ∴ ∠ODE=90°. ∵ AB是⊙O的直径, ∴ ∠ACB=90°. ∵ ∠ACB的平分线交⊙O于点D, ∴ ∠ACD=∠BCD=45°. ∴ ∠AOD=90°. ∴ ∠AOD=∠ODE. ∴ DE∥AB.····················································3分(2)解:作BH⊥DE于H,如图2. ∴ ∠BHD=∠BHE=90°. ∵ OD⊥DE,∠AOD=90°, ∴ ∠BOD=∠ODH=90°. ∴ 四边形OBHD是矩形.∵ OA=OB=OD=5,∴ 四边形OBHD是正方形. ∴ BH=OD=DH=5. ∵ 在Rt△BHE中,sinA=, ∴ tanA=. ∵ ∠ACB=90°, ∴ ∠A+∠ABC=90°. ∵ ∠EBH+∠ABC=90°, ∴ ∠A=∠EBH. ∴ tan∠EBH=tanA=. ∴ HE=BH∙tan∠EBH==. ∴ DE=HE+DH=.··············································6分25.解:(1)①由题意可设所求的的函数关系式为. 因为点(0,0)在该函数的图象上,所以. 解得 . 所求的的函数关系为. 即 .····················································2分 ②喷水头喷出的水柱能够越过这棵树.理由如下:因为当x=8时的函数值与当x=16时的函数值相等,所以当x=8时,.所以喷水头喷出的水柱能够越过这棵树.·························4分(2)(A)(C).···············································6分26.解:(1)∵ 点(2,4)在抛物线上, ∴ 4a+2b+4=4. ∴ b=-2a. ∴ . 2分 (2)①当t=1时,b=-2a,所以. ∵ 点(,3),(,6)在抛物线上,∴ 当a>0时,有a -2a+4≤3. 得4-a≤3,得a≥1. 当a<0时,有a -2a+4≥6. 得4-a≤6,得a≤-2. 综上,的取值范围是a≤-2或a≥1.································4分 ②的取值范围是0<a≤3. ·········································6分27. (1)证明:作EH⊥CD,EK⊥AB,垂足分别是H,K,如图1. ∵ OE是∠BOC的平分线, ∴ EH=EK. ∵ ME=NE,∴ Rt△EHN≌Rt△EKM.∴ ∠ENH=∠EMK.记ME与OC的交点为P, ∴ ∠EPN=∠OPM. ∴ ∠MEN=∠AOC.·············································3分 (2)OM= NF+OG.证明:在线段OM上截取OG1=OG,连接EG1,如图2. ∵ OE是∠BOC的平分线,∴ ∠EON=∠EOB.∵ ∠MOF=∠DOB,∴ ∠EOM=∠EOD.∵ OE=OE,∴ △EOG1≌△EOG.∴ EG1=EG,∠EG1O=∠EGF. ∵ EF=EG,∴ EF=EG1,∠EFG=∠EGF.∴ ∠EFG =∠EG1O.∴ ∠EFN =∠EG1M.∵ ∠ENF =∠EM G1. ∴ △ENF≌△EM G1. ∴ NF=M G1. ∵ OM=M G1+O G1,∴ OM=NF+OG.·······································7分28.解:(1)① ,;···················································2分②由题意可得线段OA的所有相关点都在以OA为 直径的圆上及其内部,如图.设这个圆的圆心是H. ∵ A(2,0), ∴ H(1,0). 当直线与⊙H相切,且b>0时, 将直线与x轴的交点分别记为B,则点B的坐标是(-b,0). ∴ BH=1+b. ∵ BH=, ∴ ,解得.当直线与⊙H相切,且b<0时, 同理可求得. 所以b的取值范围是≤b≤.··········································5分 (2)d≥.·······················································7分
相关试卷
这是一份丰台初三一模数学答案2023.4(1),共3页。
这是一份2023.4燕山地区初三一模数学答案,共9页。
这是一份2023.4延庆区初三一模数学答案,共6页。