终身会员
搜索
    上传资料 赚现金
    模拟测试卷01-【中考冲刺】2023年中考数学考前冲刺预测模拟刷题卷(长沙专用)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      模拟测试卷01-【中考冲刺】2023年中考数学考前冲刺预测模拟刷题卷(长沙专用)(原卷版).docx
    • 解析
      模拟测试卷01-【中考冲刺】2023年中考数学考前冲刺预测模拟刷题卷(长沙专用)(解析版).docx
    模拟测试卷01-【中考冲刺】2023年中考数学考前冲刺预测模拟刷题卷(长沙专用)01
    模拟测试卷01-【中考冲刺】2023年中考数学考前冲刺预测模拟刷题卷(长沙专用)02
    模拟测试卷01-【中考冲刺】2023年中考数学考前冲刺预测模拟刷题卷(长沙专用)03
    模拟测试卷01-【中考冲刺】2023年中考数学考前冲刺预测模拟刷题卷(长沙专用)01
    模拟测试卷01-【中考冲刺】2023年中考数学考前冲刺预测模拟刷题卷(长沙专用)02
    模拟测试卷01-【中考冲刺】2023年中考数学考前冲刺预测模拟刷题卷(长沙专用)03
    还剩6页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    模拟测试卷01-【中考冲刺】2023年中考数学考前冲刺预测模拟刷题卷(长沙专用)

    展开
    这是一份模拟测试卷01-【中考冲刺】2023年中考数学考前冲刺预测模拟刷题卷(长沙专用),文件包含模拟测试卷01-中考冲刺2023年中考数学考前冲刺预测模拟刷题卷长沙专用解析版docx、模拟测试卷01-中考冲刺2023年中考数学考前冲刺预测模拟刷题卷长沙专用原卷版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。

    【中考冲刺】2023年中考数学考前冲刺预测模拟刷题卷(长沙专用)
    模拟测试卷01
    一、选择题(本大题共10小题,每小题3分,满分30分)
    1.3的相反数为(  )
    A.﹣3 B.﹣ C. D.3
    【答案】A
    【分析】根据相反数的定义:只有符号不同的两个数互为相反数计算即可.
    【详解】解:3的相反数是﹣3.
    故选:A.
    【点睛】此题考查求一个数的相反数,解题关键在于掌握相反数的概念.
    2.如图是由8个相同的小正方体组成的几何体,其主视图是(    )

    A. B. C. D.
    【答案】A
    【分析】根据从正面看得到的视图是主视图,可得答案.
    【详解】解:从正面看第一层是三个小正方形,第二层最左边两个小正方形,第三层最左边一个小正方形,
    故选:A.
    【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.
    3.下列调查中,适宜采用抽样调查的是(    )
    A.调查某班学生的身高情况
    B.调查亚运会100m游泳决赛运动员兴奋剂的使用情况
    C.调查某批汽车的抗撞击能力
    D.调查一架“歼10”隐形战斗机各零部件的质量
    【答案】C
    【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
    【详解】解:A.调查某班学生的身高情况,适合全面调查,故本选项不符合题意;
    B.调查亚运会100m游泳决赛运动员兴奋剂的使用情况,适合全面调查,故本选项不符合题意;
    C.调查某批汽车的抗撞击能力,适合抽样调查,故本选项符合题意;
    D.调查一架“歼10”隐形战斗机各零部件的质量,适合全面调查,故本选项不符合题意.
    故选:C.
    【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
    4.下列运算正确的是(    )
    A. B.
    C. D.
    【答案】D
    【分析】A.根据同类二次根式的定义解题;
    B.根据二次根式的乘法法则解题;
    C.根据完全平方公式解题;
    D.幂的乘方解题.
    【详解】解:A. 与不是同类二次根式,不能合并,故A错误;
    B. ,故B错误;
    C. ,故C错误;
    D. ,故D正确,
    故选:D.
    【点睛】本题考查实数的混合运算,涉及同类二次根式、二次根式的乘法、完全平方公式、幂的乘方等知识,是重要考点,掌握相关知识是解题关键.
    5.点在y轴上,则点M的坐标为(    )
    A. B. C. D.
    【答案】D
    【分析】根据y轴上点的横坐标为0列方程求出m的值,然后求解即可.
    【详解】解:∵点M(m+1,m+3)在y轴上,
    ∴,
    解得,
    ∴,
    ∴点M的坐标为(0,2).
    故选:D.
    【点睛】本题考查点的坐标,熟记y轴上点的横坐标为0,x轴上点的纵坐标为0是解题的关键.
    6.“杂交水稻之父”袁隆平培育的超级杂交稻在全世界推广种植.某种植户为了考察所种植的杂交水稻苗的长势,从稻田中随机抽取9株水稻苗,测得苗高(单位:cm)分别是:22,23,24,23,24,25,26,23,25.则这组数据的众数和中位数分别是(    )
    A.24,25 B.23,23 C.23,24 D.24,24
    【答案】C
    【分析】根据众数和中位数的定义即可得.
    【详解】解:因为23出现的次数最多,
    所以这组数据的众数是23,
    将这组数据按从小到大进行排序为,
    则这组数据的中位数是24,
    故选:C.
    【点睛】本题考查了众数和中位数,熟记定义是解题关键.
    7.我国古代数学名著《九章算术》中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”意思是现有几个人共买一件物品,每人出8钱.多出3钱;每人出7钱,差4钱.问人数,物价各是多少?若设共有人,物价是钱,则下列方程正确的是(    )
    A. B.
    C. D.
    【答案】D
    【分析】设共有x人,根据物价不变列方程;设物价是钱,根据人数不变即可列出一元一次方程;由此即可确定正确答案
    【详解】解:设共有x人,则有8x-3=7x+4
    设物价是钱,则根据可得:

    故选D.
    【点睛】本题主要考查了列一元一次方程,正确审题、发现隐藏的等量关系成为解答本题的关键.
    8.如图,已知,点E在线段AD上(不与点A,点D重合),连接CE.若∠C=20°,∠AEC=50°,则∠A=(    )

    A.10° B.20° C.30° D.40°
    【答案】C
    【分析】根据三角形外角的性质、平行线的性质进行求解即可;
    【详解】解:∵∠C+∠D=∠AEC,
    ∴∠D=∠AEC-∠C=50°-20°=30°,
    ∵,
    ∴∠A=∠D=30°,
    故选:C.
    【点睛】本题主要考查三角形外角的性质、平行线的性质,掌握相关性质并灵活应用是解题的关键.
    9.如图,内接于,CD是的直径,,则(    )

    A.70° B.60° C.50° D.40°
    【答案】C
    【分析】由CD是⊙O的直径,根据直径所对的圆周角是直角,得出∠CAD=90°,根据直角三角形两锐角互余得到∠ACD与∠D互余,即可求得∠D的度数,继而求得∠B的度数.
    【详解】解:∵CD是⊙O的直径,
    ∴∠CAD=90°,
    ∴∠ACD+∠D=90°,
    ∵∠ACD=40°,
    ∴∠ADC=∠B=50°.
    故选:C.
    【点睛】本题考查了圆周角定理,直角三角形的性质,注意掌握数形结合思想是解题的关键.
    10.如图,在矩形ABCD中,AB<BC,连接AC,分别以点A,C为圆心,大于AC的长为半径画弧,两弧交于点M,N,直线MN分别交AD,BC于点E,F.下列结论:
    ①四边形AECF是菱形;
    ②∠AFB=2∠ACB;
    ③AC•EF=CF•CD;
    ④若AF平分∠BAC,则CF=2BF.
    其中正确结论的个数是(    )

    A.4 B.3 C.2 D.1
    【答案】B
    【分析】根据作图可得,且平分,设与的交点为,证明四边形为菱形,即可判断①,进而根据等边对等角即可判断②,根据菱形的性质求面积即可求解.判断③,根据角平分线的性质可得,根据含30度角的直角三角形的性质,即可求解.
    【详解】如图,设与的交点为,

    根据作图可得,且平分,

    四边形是矩形,


    又, ,



    四边形是平行四边形,
    垂直平分,

    四边形是菱形,故①正确;
    ②,

    ∠AFB=2∠ACB;故②正确;
    ③由菱形的面积可得AC•EF=CF•CD;故③不正确,
    ④四边形是矩形,

    若AF平分∠BAC,,
    则,






    CF=2BF.故④正确;
    故选B
    【点睛】本题考查了菱形的性质与判定,矩形的性质,平行四边形的性质与判定,含30度角的直角三角形的性质,角平分线的性质,综合运用以上知识是解题的关键.

    二、填空题(本大题共6小题,每小题3分,满分18分)
    11.若分式有意义,则的取值范围是______.
    【答案】且##x≠2且x≥-3
    【分析】根据分式有意义的条件,二次根式有意义的条件解题即可.
    【详解】解:由题意得

    解得,即且
    故答案为:且.
    【点睛】本题考查分式有意义的条件、二次根式有意义的条件,是基础考点,掌握相关知识是解题关键.
    12.若关于x的分式方程﹣1=无解,则m=___.
    【答案】2
    【分析】去分母,将分式方程转化为整式方程,根据分式方程有增根时无解求m的值.
    【详解】解:﹣1=,
    方程两边同时乘以x﹣1,得2x﹣(x﹣1)=m,
    去括号,得2x﹣x+1=m,
    移项、合并同类项,得x=m﹣1,
    ∵方程无解,
    ∴x=1,
    ∴m﹣1=1,
    ∴m=2,
    故答案为2.
    【点睛】本题考查分式方程无解计算,解题时需注意,分式方程无解要根据方程的特点进行判断,既要考虑分式方程有增根的情况,又要考虑整式方程无解的情况.
    13.如图,A、B、C是上的点,,垂足为点D,且D为OC的中点,若,则BC的长为___________.

    【答案】7
    【分析】根据垂径定理可得垂直平分,根据题意可得平方,可得四边形是菱形,进而根据菱形的性质即可求解.
    【详解】解:如图,连接,

    A、B、C是上的点,,

    D为OC的中点,

    四边形是菱形,,

    故答案为:7.
    【点睛】本题考查了垂径定理,菱形的性质与判定,掌握垂径定理是解题的关键.
    14.关于x的一元二次方程有两个不相等的实数根,则k的取值范围是________.
    【答案】且.
    【分析】根据根的判别式及一元二次方程的定义解题即可.
    【详解】∵关于x的一元二次方程有两个不相等的实数根,

    解得.
    又∵该方程为一元二次方程,

    且.
    故答案为:且.
    【点睛】本题主要考查根的判别式及一元二次方程的定义,属于基础题,掌握根的判别式及一元二次方程的定义是解题的关键.
    15.在一个不透明的袋中装有若干个红球和4个黑球,每个球除颜色外完全相同.摇匀后从中摸出一个球,记下颜色后再放回袋中.不断重复这一过程,共摸球100次.其中有40次摸到黑球,估计袋中红球的个数是__________.
    【答案】6
    【分析】估计利用频率估计概率可估计摸到黑球的概率为 ,然后根据概率公式构建方程求解即可.
    【详解】解:设袋中红球的个数是x个,根据题意得:

    解得:x=6,
    经检验:x=6是分式方程的解,
    即估计袋中红球的个数是6个.
    故答案为:6.
    【点睛】本题考查了利用频率估计概率,解题的关键是熟练掌握大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率用频率估计概率得到的是近似值,随试验次数的增多,值越来越精确.
    16.甲、乙、丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲、乙各比赛了4局,丙当了3次裁判.则第二局的输者是________.
    【答案】丙
    【分析】由丙当了3次裁判知有三场比赛是甲乙比赛,丙当裁判,且这三场比赛分别是:第一局,第三局,第五局,由于输球的人下局当裁判,因此第二场输的人是丙.
    【详解】解:由题意,知:由丙当了3次裁判知有三场比赛是甲乙比赛,丙当裁判,且这三场比赛分别是:第一局,第三局,第五局;
    第一局:甲VS乙,丙当裁判;
    第三局:甲VS乙,丙当裁判;
    第五局:甲VS乙,丙当裁判;
    由于输球的人下局当裁判,因此第二场输的人是丙.
    故答案是:丙.
    【点睛】本题考查猜想与证明,解题的关键是理解甲乙比赛,丙当裁判,的这三场比赛分别是:第一局,第三局,第五局.

    三、解答题(本大题共9小题,第17~19题每题6分,第20~21题每题8分,第22~23题每题9分,第24~25题每题10分,满分72分。)
    17.计算:.
    【答案】
    【分析】原式分别利用乘方,特殊角的三角函数值,零指数幂,负整数指数幂,乘法法则分别计算,再作加减法.
    【详解】解:
    =
    =
    【点睛】此题考查了实数的混合运算,熟练掌握运算法则是解本题的关键.
    18.解不等式组,并把解集在数轴上表示出来
    【答案】−1≤x<3,在数轴上的表示见详解.
    【分析】先求出每个不等式的解集,再求出这些不等式解集的公共部分,然后在数轴上表示出来即可.
    【详解】解:
    由①得:x≥−1;
    由②得:x<3;
    ∴原不等式组的解集为−1≤x<3,
    在坐标轴上表示:

    【点睛】此题主要考查了解一元一次不等式组,以及在数轴上表示不等式的解集,求出不等式组的解集是解题关键,注意在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
    19.在一次课外活动中,某数学兴趣小组测量一棵树的高度.如图所示,测得斜坡的坡度,坡底的长为8米,在处测得树顶部的仰角为,在处测得树顶部的仰角为,求树高.(结果保留根号)

    【答案】米.
    【分析】作BF⊥CD于点F,设DF=x米,在直角△DBF中利用三角函数用x表示出BF的长,在直角△DCE中表示出CE的长,然后根据BF-CE=AE即可列方程求得x的值,进而求得CD的长.
    【详解】解:作于点,设米,

    在中,,
    则(米,
    ∵,且AE=8


    在直角中,米,
    在直角中,,
    米.
    ,即.
    解得:,
    则米.
    答:的高度是米.
    【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,坡度坡角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.
    20.某校七、八年级各有500名学生,为了解该校七、八年级学生对党史知识的掌握情况,从七、八年级学生中各随机抽取15人进行党史知识测试,统计这部分学生的测试成绩(成绩均为整数,满分10分,8分及以上为优秀),相关数据统计、整理如下:七年级抽取学生的成绩:6,6,6,8,8,8,8,8,8,8,9,9,9,9,10;

    (1)填空:=________,=________;
    (2)根据以上数据,你认为该校七、八年级中,哪个年级的学生党史知识掌握得较好?请说明理由(写出一条即可);
    (3)请估计七、八年级学生对党史知识掌握能够达到优秀的总人数;
    (4)现从七、八年级获得10分的4名学生中随机抽取2人参加市党史知识竞赛,请用列表或画树状图法,求出被选中的2人恰好是七、八年级各1人的概率.
    【答案】(1)=8, =8;(2)见解析;(3)700人;(4)图表见解析,
    【分析】(1)根据中位数的定义:可以直接从所给数据求得,从所给条形图分析解决;
    (2)七、八年级的平均数和中位数相同,七年级的优秀率大于八年级的优秀率,即可求解;
    (3)由七、八年级的总人数分别乘以优秀率,再相加即可;
    (4)根据题意列表,然后求出所有的等可能的结果数,然后求出恰好每个年级都有一个的结果数,然后计算即可.
    【详解】解:(1)由题意可知:=8, =8;
    (2)七年级学生的党史知识掌握得较好,理由如下:
    ∵七年级和八年级的平均数相同,但是七年级的优秀率大于八年级的优秀率
    ∴七年级学生的党史知识掌握得较好;
    (3)从现有样本估计全年级,七年级达到优秀的人数可能有500人×80%=400人,
    八年级达到优秀的人数可能有500人×60%=300人,
    所以两个年级能达优秀的总人数可能会有700人;
    (4)把七年级的学生记做A,八年级的三名学生即为B、C、D,列表如下:

    A
    B
    C
    D
    A

    (A,B)
    (A,C)
    (A,D)
    B
    (B,A)

    (B,C)
    (B,D)
    C
    (C,A)
    (C,B)

    (C,D)
    D
    (D,A)
    (D,B)
    (D,C)


    由表知,一共有12种等可能性的结果,恰好每个年级都有一个的结果数是6,
    两人中恰好是七八年级各1人的概率是 .
    【点睛】本题主要考查了统计与概率,用样本估计总体,列表或画树状图求概率,中位数的定义等等,解题的关键在于能够熟练掌握相关知识进行求解.
    21.如图,四边形ABCD中,BC=CD=2AB,ABCD,∠B=90°,E是BC的中点,AC与DE相交于点F.
    (1)求证:ABC≌ECD;
    (2)判断线段AC与DE的位置关系,并说明理由.

    【答案】(1)见解析
    (2)AC⊥DE,见解析
    【分析】(1)由E是BC的中点,BC=2AB可证明AB=EC,由平行线的性质得出∠B+∠ECD=180°,得出∠ECD=90°=∠B,最后由SAS证明△ABC≌△ECD即可;
    (2)由全等三角形的性质得出,∠CED=∠CAB,再由∠CAB+∠ACB=90°推导∠CED+∠ACB=90°,进而得出∠EFC=90°,即可得出结论.
    【详解】(1)证明:∵E是BC的中点,
    ∴BC=2EC,
    ∵BC=2AB,
    ∴AB=EC,
    ∵,
    ∴∠B+∠ECD=180°,
    ∵∠B=90°,
    ∴∠B=∠ECD=90°,
    在△ABC和△ECD中,

    ∴△ABC≌△ECD(SAS);
    (2)AC⊥DE.理由如下:
    ∵△ABC≌△ECD(SAS),
    ∴∠CED=∠CAB,
    ∵∠CAB+∠ACB=90°,
    ∴∠CED+∠ACB=90°,
    ∴∠EFC=90°,
    ∴AC⊥DE.
    【点睛】本题主要考查了平行线的性质、全等三角形的判定与性质、直角三角形的性质等知识,证明三角形全等是解题的关键.
    22.某药店新进一批桶装消毒液,每桶进价35元,原计划以每桶55元的价格销售,为更好地助力疫情防控,现决定降价销售.已知这种消毒液销售量(桶)与每桶降价(元)()之间满足一次函数关系,其图象如图所示:
    (1)求与之间的函数关系式;
    (2)在这次助力疫情防控活动中,该药店仅获利1760元.这种消毒液每桶实际售价多少元?

    【答案】(1)y=10x+100;(2)这种消毒液每桶实际售价43元
    【分析】(1)设与之间的函数表达式为,将点、代入一次函数表达式,即可求解;
    (2)根据利润等于每桶的利润乘以销售量得关于的一元二次方程,通过解方程即可求解.
    【详解】解:(1)设与销售单价之间的函数关系式为:,
    将点、代入一次函数表达式得:,
    解得:,
    故函数的表达式为:;
    (2)由题意得:,
    整理,得.
    解得,(舍去).
    所以.
    答:这种消毒液每桶实际售价43元.
    【点睛】本题主要考查了一元二次方程的应用以及用待定系数法求一次函数解析式等知识,正确利用销量每件的利润总利润得出一元二次方程是解题关键.
    23.已知四边形ABCD中,BC=CD.连接BD,过点C作BD的垂线交AB于点E,连接DE.
    (1)如图1,若,求证:四边形BCDE是菱形;
    (2)如图2,连接AC,设BD,AC相交于点F,DE垂直平分线段AC.
    (ⅰ)求∠CED的大小;
    (ⅱ)若AF=AE,求证:BE=CF.

    【答案】(1)见解析
    (2)(ⅰ);(ⅱ)见解析

    【分析】(1)先根据DC=BC,CE⊥BD,得出DO=BO,再根据“AAS”证明,得出DE=BC,得出四边形BCDE为平行四边形,再根据对角线互相垂直的平行四边形为菱形,得出四边形BCDE为菱形;
    (2)(ⅰ)根据垂直平分线的性质和等腰三角形三线合一,证明∠BEG=∠DEO=∠BEO,再根据∠BEG+∠DEO+∠BEO=180°,即可得出;
    (ⅱ)连接EF,根据已知条件和等腰三角形的性质,算出,得出,证明,再证明,即可证明结论.
    【详解】(1)证明:∵DC=BC,CE⊥BD,
    ∴DO=BO,
    ∵,
    ∴,,
    ∴(AAS),
    ∴,
    ∴四边形BCDE为平行四边形,
    ∵CE⊥BD,
    ∴四边形BCDE为菱形.

    (2)(ⅰ)根据解析(1)可知,BO=DO,


    ∴CE垂直平分BD,
    ∴BE=DE,
    ∵BO=DO,
    ∴∠BEO=∠DEO,
    ∵DE垂直平分AC,
    ∴AE=CE,
    ∵EG⊥AC,
    ∴∠AEG=∠DEO,
    ∴∠AEG=∠DEO=∠BEO,
    ∵∠AEG+∠DEO+∠BEO=180°,
    ∴.
    (ⅱ)连接EF,


    ∵EG⊥AC,
    ∴,
    ∴,





    ∵AE=AF,
    ∴,
    ∴,

    ∴,
    ∵,
    ∴,
    ∴,  
    ∴,
    ∴,

    ∴,



    ∴,

    ∴(AAS),

    【点睛】本题主要考查了垂直平分线的性质、等腰三角形的判定和性质,三角形全等的判定和性质,菱形的判定,直角三角形的性质,作出辅助线,得出,得出,是解题的关键.
    24.如图1,为半圆O的直径,C为延长线上一点,切半圆于点D,,交延长线于点E,交半圆于点F,已知.点P,Q分别在线段上(不与端点重合),且满足.设.
    (1)求半圆O的半径.
    (2)求y关于x的函数表达式.
    (3)如图2,过点P作于点R,连结.
    ①当为直角三角形时,求x的值.
    ②作点F关于的对称点,当点落在上时,求的值.

    【答案】(1)
    (2)
    (3)①或;②

    【分析】(1)连接OD,设半径为r,利用,得,代入计算即可;
    (2)根据CP=AP十AC,用含x的代数式表示 AP的长,再由(1)计算求AC的长即可;
    (3)①显然,所以分两种情形,当 时,则四边形RPQE是矩形,当 ∠PQR=90°时,过点P作PH⊥BE于点H, 则四边形PHER是矩形,分别根据图形可得答案;
    ②连接,由对称可知,利用三角函数表示出和BF的长度,从而解决问题.
    (1)
    解:如图1,连结.设半圆O的半径为r.

    ∵切半圆O于点D,
    ∴.
    ∵,
    ∴,
    ∴,
    ∴,
    即,
    ∴,即半圆O的半径是.
    (2)
    由(1)得:.
    ∵,
    ∴.
    ∵,
    ∴.
    (3)
    ①显然,所以分两种情况.
    ⅰ)当时,如图2.

    ∵,
    ∴.
    ∵,
    ∴四边形为矩形,
    ∴.
    ∵,
    ∴,
    ∴.
    ⅱ)当时,过点P作于点H,如图3,

    则四边形是矩形,
    ∴.
    ∵,
    ∴.
    ∵,
    ∴,
    ∴,
    ∴,
    ∴,
    由得:,
    ∴.
    综上所述,x的值是或.
    ②如图4,连结,

    由对称可知,
    ∵BE⊥CE,PR⊥CE,
    ∴PR∥BE,
    ∴∠EQR=∠PRQ,
    ∵,,
    ∴EQ=3-x,
    ∵PR∥BE,
    ∴,
    ∴,
    即:,
    解得:CR=x+1,
    ∴ER=EC-CR=3-x,
    即:EQ= ER
    ∴∠EQR=∠ERQ=45°,

    ∴,  
    ∴.
    ∵是半圆O的直径,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴.
    【点睛】本题是圆的综合题,主要考查了切线的性质,相似三角形的判定与性质,圆周角定理,三角函数等知识,利用三角函数表示各线段的长并运用分类讨论思想是解题的关键.
    25.如图,二次函数的图象交轴于点、,交轴于点,点是第四象限内抛物线上的动点,过点作轴交轴于点,线段的延长线交于点,连接、交于点,连接.
    (1)求二次函数的表达式;
    (2)当时,求点的坐标及;
    (3)在(2)的条件下,点是轴上一个动点,求的最小值.

    【答案】(1);(2),;(3)
    【分析】(1)把点A的坐标为(-2,0),点B的坐标为(1,0)代入y=ax2+bx+1,解方程组即可得到结论;
    (2)由条件可得BE•DE=OE•EM,设D(a,-x2−x+1),则可表示BE、DE、OE、EM的长,得到关于a的方程,解方程可求出D点的坐标,求出AE、DE长,则sin∠DAE的值可求;
    (3)作D关于x轴的对称点F,过点F作FH⊥AD于点H,交轴于点P,则∠DAE=∠HFD,DP+AP=FP+HP,此时FH最小,求出最小值即可.
    【详解】解:(1)把点,点代入得
    ,解得,
    ∴二次函数的表达式为;
    (2)∵二次函数的表达式为,
    令,得,
    ∴点的坐标为.
    设直线的解析式为,
    ∴,解得,
    ∴直线的解析式为.
    ∵轴,∴,.
    ∵,∴.
    设,则,
    ∴,,,,
    ∴,
    解得,(舍去),(舍去),
    ∴,
    ∴,,
    ∴,
    ∴;
    (3)如图,作点关于轴的对称点,过点作于点,交轴于点,连接,则,
    ∵,
    ∴,
    ∴,
    ∴,由垂线段最短可知此时长度最小,
    ∵,∴,
    ∴,
    ∴,
    ∴的最小值为.

    【点睛】主要考查了待定系数法求函数的解析式,函数图象上点的坐标特征,勾股定理,垂线段最短,轴对称的性质,以及解直角三角形的知识,要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系,解决相关问题.



    相关试卷

    必刷卷02——2023年中考数学考前30天冲刺必刷卷(湖南长沙专用): 这是一份必刷卷02——2023年中考数学考前30天冲刺必刷卷(湖南长沙专用),文件包含必刷卷022023年中考数学考前30天冲刺必刷卷湖南长沙专用解析版docx、必刷卷022023年中考数学考前30天冲刺必刷卷湖南长沙专用原卷版docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。

    必刷卷01——2023年中考数学考前30天冲刺必刷卷(湖南长沙专用): 这是一份必刷卷01——2023年中考数学考前30天冲刺必刷卷(湖南长沙专用),文件包含必刷卷012023年中考数学考前30天冲刺必刷卷湖南长沙专用解析版docx、必刷卷012023年中考数学考前30天冲刺必刷卷湖南长沙专用原卷版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。

    模拟测试卷05-【中考冲刺】2023年中考数学考前冲刺预测模拟刷题卷(长沙专用): 这是一份模拟测试卷05-【中考冲刺】2023年中考数学考前冲刺预测模拟刷题卷(长沙专用),文件包含模拟测试卷05-中考冲刺2023年中考数学考前冲刺预测模拟刷题卷长沙专用解析版docx、模拟测试卷05-中考冲刺2023年中考数学考前冲刺预测模拟刷题卷长沙专用原卷版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        模拟测试卷01-【中考冲刺】2023年中考数学考前冲刺预测模拟刷题卷(长沙专用)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map