【新高考】《中档解答题计划》——概率与统计【分析汇总】
展开
这是一份【新高考】《中档解答题计划》——概率与统计【分析汇总】,共9页。试卷主要包含了超几何分布,线性回归,频率分布表,条件概率,非线性回归,分布列,二项分布,正态分布等内容,欢迎下载使用。
《中档解答题计划》——专题训练——概率与统计 一、超几何分布、方案选择1.2017年春节期间,某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸到2个红球,则打6折;若摸到1个红球,则打7折;若没摸到红球,则不打折.方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算.二、线性回归、相关系数2. 港珠澳大桥海底隧道是当今世界上埋深最大、综合技术难度最高的沉管隧道,建设过程中突破了许多世界级难题,其建成标志着我国在隧道建设领域已达到世界领先水平.在开挖隧道施工过程中,若隧道拱顶下沉速率过快,无法保证工程施工的安全性,则需及时调整支护参数.某施工队对正在施工的隧道工程进行下沉量监控量测工作,通过对监控量测结果进行回归分析,建立前天隧道拱顶的累加总下沉量(单位:毫米)与时间(单位:天)的回归方程,通过回归方程预测是否需要调整支护参数.已知该隧道拱顶下沉的实测数据如表所示:112345670.010.040.140.521.382.314.3研究人员制作相应散点图,通过观察,拟用函数进行拟合.令,计算得:,,,,,.(1)请判断是否可以用线性回归模型拟合与的关系;(通常时,认为可以用线性回归模型拟合变量间的关系)(2)试建立与的回归方程,并预测前8天该隧道拱顶的累加总下沉量;(3)已知当拱顶下沉速率超过9毫米天,支护系统将超负荷,隧道有塌方风险.若规定每天下午6点为调整支护参数的时间,试估计最迟在第几天需调整支护参数,才能避免塌方.附:①相关系数;②回归直线中斜率和截距的最小二乘估计公式分别为:,;③参考数据:,.三、频率分布表、分布列与期望3.为保护学生视力,让学生在学校专心学习,促进学生身心健康发展,教育部于2021年1月15日下发文件《关于加强中小学生手机管理工作的通知》,对中小学生的手机使用和管理作出了规定.某中学研究型学习小组调查研究“中学生每日使用手机的时间”,从该校中随机调查了100名学生,得到如下统计表:时间,,,,,,人数1038321073(1)估计该校所有学生每日使用手机的时间的中位数;(2)以频率估计概率,若在该校学生中随机挑选3人,记这3人每日使用手机的时间在,的人数为随机变量,求的分布列和数学期望.四、条件概率、独立性检验4.糟蛋是新鲜鸭蛋(或鸡蛋)用优质糯米糟制而成,是中国别具一格的特色传统美食,以浙江平湖糟蛋、陕州糟蛋和四川宜宾糟蛋最为著名.平湖糟蛋采用优质鸭蛋、上等糯米和酒糟糟渍而成,经过糟渍蛋壳脱落,只有一层薄膜包住蛋体,其蛋白呈乳白色,蛋黄为橘红色,味道鲜美.糟蛋营养丰富,每百克中约含蛋白质15.8克、钙24.8克、磷11.1克、铁0.31克,并含有维持人体新陈代谢必须的18种氨基酸.现有平湖糟蛋的两家生产工厂,产品按质量分为特级品、一级品和二级品,其中特级品和一级品都是优等品,二级品为合格品.为了比较两家工厂的糟蛋质量,分别从这两家工厂的产品中各选取了200个糟蛋,产品质量情况统计如表: 优等品合格品合计特级品一级品二级品工厂甲1007525200工厂乙1203050200合计22010575400(1)从400个糟蛋中任取一个,记事件表示取到的糟蛋是优等品,事件表示取到的糟蛋来自于工厂甲.求;(2)依据小概率值的独立性检验,从优等品与合格品的角度能否据此判断两家工厂生产的糟蛋质量有差异?附:参考公式:,其中.独立性检验临界值表:0.100.050.0100.0050.0012.7063.8416.6357.87910.828五、非线性回归5.植物生长调节剂是一种对植物的生长发育有调节作用的化学物质,它在生活中的应用非常广泛.例如,在蔬菜贮藏前或者贮藏期间,使用一定浓度的植物生长调节剂,可抑制萌芽,保持蔬菜新鲜,延长贮藏期.但在蔬菜上残留的一些植物生长调节剂会损害人体健康.某机构研发了一种新型植物生长调节剂,它能延长种子、块茎的休眠,进而达到抑制萌芽的作用.为了测试它的抑制效果,高三某班进行了一次数学建模活动,研究该植物生长调节剂对甲种子萌芽的具体影响,通过实验,收集到的浓度与甲种子发芽率的数据.表(一浓度发芽率0.940.760.460.240.10若直接采用实验数据画出散点图,(如图1所示)除了最后一个数据点外,其他各数据点均紧临坐标轴,这样的散点图给我们观察数据背后的规律造成很大的障碍,为了能够更好的观察现有数据,将其进行等价变形是一种有效的途径,通过统计研究我们引进一个中间量,令,通过,将浓度变量变换为的浓度级变量,得到新的数据.表(二浓度浓度级12345发芽率0.940.760.460.240.10(Ⅰ)如图2所示新数据的散点图,1散点的分布呈现出很强的线性相关特征.请根据表中数据,建立关于的经验回归方程;(Ⅱ)根据得到的经验回归方程,要想使得甲种子的发芽率不高于0.4,估计浓度至少要达到多少?附:对于一组数据,,,,,,,其经验回归方程中斜率和截距的最小二乘估计公式分别为:,.六、分布列、独立性检验6.随着老年人消费需求从“生存型”向“发展型”转变.消费层次不断提升,“银发经济”成为社会热门话题之一,被各企业持续关注.某企业为了解该地老年人消费能力情况,对该地年龄在,的老年人的年收入按年龄,,,分成两组进行分层抽样调查,已知抽取了年龄在,的老年人500人.年龄在,的老年人300人.现作出年龄在,的老年人年收入的频率分布直方图(如下图所示).(1)根据频率分布直方图,估计该地年龄在,的老年人年收入的平均数及第95百分位数;(2)已知年龄在,的老年人年收入的方差为3,年龄在,的老年人年收入的平均数和方差分别为3.75和1.4,试估计年龄在,的老年人年收入的方差.七、二项分布、概率与分布列7.甲、乙两人进行对抗赛,每场比赛均能分出胜负.已知本次比赛的主办方提供8000元奖金,并规定:①若其中一人赢的场数先达到4场,则比赛终止,同时这个人获得全部奖金;②若比赛意外终止时无人先赢4场,则按照比赛继续进行各自赢得全部奖金的概率之比给甲、乙分配奖金.已知每场比赛甲赢的概率为,乙赢的概率为,且每场比赛相互独立.(1)若在已进行的5场比赛中甲赢2场、乙赢3场,求比赛继续进行且乙赢得全部奖金的概率;(2)若比赛进行了5场时比赛终止(含自然终止与意外终止),则这5场比赛中甲、乙之间的比赛结果共有多少不同的情况?(3)若比赛进行了5场时比赛终止(含自然终止与意外终止),设,若主办方按规定颁发奖金,求甲获得奖金数的分布列;八、正态分布、期望与方差8.某市举行招聘考试,共有4000人参加,分为初试和复试,初试通过后参加复试.为了解考生的考试情况,随机抽取了100名考生的初试成绩,并以此为样本绘制了样本频率分布直方图,如图所示.(1)根据频率分布直方图,试求样本平均数的估计值;(2)若所有考生的初试成绩近似服从正态分布,其中为样本平均数的估计值,,试估计初试成绩不低于88分的人数;(3)复试共三道题,第一题考生答对得5分,答错得0分,后两题考生每答对一道题得10分,答错得0分,答完三道题后的得分之和为考生的复试成绩.已知某考生进入复试,他在复试中第一题答对的概率为,后两题答对的概率均为,且每道题回答正确与否互不影响.记该考生的复试成绩为,求的分布列及均值.附:若随机变量服从正态分布,则:,,.第21天训练一、相互独立事件、实际意义研究2.兔年春节期间,烟花“加特林”因燃放效果酷炫在网上走红,随之而来的身价暴涨也引发关注,甚至还有买不到的网友用多支普通的手持燃放烟花自制“加特林”.据悉,有,,三家工厂可以各自独立生产烟花“加特林”,已知工厂生产的烟花“加特林”是正品同时工厂生产的烟花“加特林”也是正品的概率为,工厂生产的烟花“加特林”是正品同时工厂生产的烟花“加特林”不是正品的概率为,工厂生产的烟花“加特林”是正品同时工厂生产的烟花“加特林”不是正品的概率为.(1)分别求,,三家工厂各自独立生产出来的烟花“加特林”是正品的概率;(2),,三家工厂各自独立生产一件烟花“加特林”,记随机变量表示“三家工厂生产出来的正品的件数”,求的数学期望,它反映了什么实际意义?第23天训练一、抽样提取数据、独立性检验1.已知某区、两所初级中学的初一年级在校学生人数之比为,该区教育局为了解双减政策的落实情况,用分层抽样的方法在、两校初一年级在校学生中共抽取了100名学生,调查了他们课下做作业的时间,并根据调查结果绘制了如下频率分布直方图:(1)在抽取的100名学生中,、两所学校各抽取的人数是多少?(2)该区教育局想了解学生做作业时间的平均时长(同一组中的数据用该组区间的中点值作代表)和做作业时长超过3小时的学生比例,请根据频率分布直方图,估计这两个数值;(3)另据调查,这100人中做作业时间超过3小时的人中的20人来自中学,根据已知条件填写下面列联表,并根据列联表判断是否有的把握认为“做作业时间超过3小时”与“学校”有关? 做作业时间超过3小时做作业时间不超过3小时合计校_______________校_______________合计_______________附表:0.100.050.0250.0100.0012.7063.8415.0246.63510.828附:.第25天训练二、折线图数据提取、概率分布列、答案不唯一2.为了增强学生的冬奥会知识,弘扬奥林匹克精神,北京市多所中小学校开展了模拟冬奥会各项比赛的活动.为了了解学生在越野滑轮和旱地冰壶两项中的参与情况,在北京市中小学学校中随机抽取了10所学校,10所学校的参与人数如下:(Ⅰ)现从这10所学校中随机选取2所学校进行调查.求选出的2所学校参与越野滑轮人数都超过40人的概率;(Ⅱ)现有一名旱地冰壶教练在这10所学校中随机选取2所学校进行指导,记为教练选中参加旱地冰壶人数在30人以上的学校个数,求的分布列和数学期望;(Ⅲ)某校聘请了一名越野滑轮教练,对高山滑降、转弯、八字登坡滑行这3个动作进行技术指导.规定:这3个动作中至少有2个动作达到“优”,总考核记为“优”.在指导前,该校甲同学3个动作中每个动作达到“优”的概率为0.1.在指导后的考核中,甲同学总考核成绩为“优”.能否认为甲同学在指导后总考核达到“优”的概率发生了变化?请说明理由.第27天训练一、频率分布直方图、分布列、期望1.某中学有初中学生1800人,高中学生1200人,为了解学生本学期课外阅读时间,现采用分成抽样的方法,从中抽取了100名学生,先统计了他们课外阅读时间,然后按“初中学生”和“高中学生”分为两组,再将每组学生的阅读时间(单位:小时)分为5组:,,,,,,,,,,并分别加以统计,得到如图所示的频率分布直方图.(1)写出的值;(2)试估计该校所有学生中,阅读时间不小于30个小时的学生人数;(3)从阅读时间不足10个小时的样本学生中随机抽取3人,并用表示其中初中生的人数,求的分布列和数学期望.第29天训练二、非线性回归、残差分析2.黄河鲤是我国华北地区的主要淡水养殖品种之一,其鳞片金黄、体形形长,尤以色泽鲜丽、肉质细嫩、气味清香而著称.为研究黄河鲤早期生长发育的规律,丰富黄河鲤早期养殖经验,某院校研究小组以当地某水产养殖基地的黄河鲤仔鱼为研究对象,从出卵开始持续观察20天,试验期间,每天固定时段从试验水体中随机取出同批次9尾黄河鲤仔鱼测量体长,取其均值作为第天的观测值(单位:,其中,,2,3,,20.根据以往的统计资料,该组数据,可以用曲线拟合模型或非线性回归模型进行统计分析,其中,,为参数.基于这两个模型,绘制得到如下的散点图和残差图:(1)你认为哪个模型的拟合效果更好?分别结合散点图和残差图进行说明;(2)假定,且黄河鲤仔鱼的体长与天数具有很强的相关关系.现对数据进行初步处理,得到如下统计量的值:,,其中,根据(1)的判断结果及给定数据,求关于的经验回归方程,并预测第22天时仔鱼的体长(结果精确到小数点后2位).附:对于一组数据,,,,,,,其回归直线的斜率和截距的最小二乘估计分别为;参考数据:.
相关试卷
这是一份【新高考】第21天——《中档解答题计划》——模拟训练(一),共6页。试卷主要包含了基本量问题,相互独立,边角混合式等内容,欢迎下载使用。
这是一份【新高考】第29天——《中档解答题计划》——模拟训练(五),共7页。试卷主要包含了几何图形出条件解三角形,非线性回归,构建新数列,棱锥载体,线面平行证明等内容,欢迎下载使用。
这是一份【新高考】《中档解答题计划》——数列【分析汇总】,共2页。试卷主要包含了基本量问题,新定义函数,求关系问题,通项递推关系问题等内容,欢迎下载使用。