- (统考版)2023高考数学二轮专题复习 第三篇 关键能力为重(研重点 保大分)专题六 函数与导数 第4讲 导数的综合应用课件 课件 0 次下载
- (统考版)2023高考数学二轮专题复习 第三篇 关键能力为重(研重点 保大分)专题七 选考系列 第1讲 坐标系与参数方程课件 课件 0 次下载
- (统考版)2023高考数学二轮专题复习 第三篇 关键能力为重(研重点 保大分)专题三 立体几何 第1讲 空间几何体的三视图、表面积与体积课件 课件 0 次下载
- (统考版)2023高考数学二轮专题复习 第三篇 关键能力为重(研重点 保大分)专题三 立体几何 第2讲 空间位置关系的判断与证明课件 课件 0 次下载
- (统考版)2023高考数学二轮专题复习 第三篇 关键能力为重(研重点 保大分)专题三 立体几何 第3讲 空间向量与立体几何课件 课件 0 次下载
(统考版)2023高考数学二轮专题复习 第三篇 关键能力为重(研重点 保大分)专题七 选考系列 第2讲 不等式选讲课件
展开归纳总结证明不等式的常用方法不等式证明的常用方法有比较法、分析法、综合法、放缩法、反证法等.(1)如果已知条件与待证结论直接联系不明显,则考虑用分析法.(2)利用放缩法证明不等式,就是舍掉式中的一些正项或负项,或者在分式中放大或缩小分子、分母,还可把和式中各项或某项换为较大或较小的数或式子,从而达到证明不等式的目的.(3)如果待证的是否定性命题、唯一性命题或以“至少”“至多”等方式给出的问题,则考虑用反证法.用反证法证明不等式的关键是作出假设,推出矛盾.
考点二 含绝对值不等式的解法
考点二 含绝对值不等式的解法——掀起“绝对值”的盖头1.|ax+b|≤c,|ax+b|≥c型不等式的解法(1)c>0,则|ax+b|≤c的解集为-c≤ax+b≤c,|ax+b|≥c的解集为ax+b≥c或ax+b≤-c,然后根据a、b的值解出即可.(2)c<0,则|ax+b|≤c的解集为∅,|ax+b|≥c的解集为R.2.|x-a|+|x-b|≥c,|x-a|+|x-b|≤c型不等式的解法(1)令每个绝对值符号里的一次式为0,求出相应的根;(2)把这些根由小到大排序,它们把数轴分为若干个区间;(3)在所分区间上,根据绝对值的定义去掉绝对值符号,讨论所得的不等式在这个区间上的解集;(4)这些解集的并集就是原不等式的解集.
归纳总结绝对值不等式的常用解法(1)基本性质法:对a∈R+,|x|a⇔x<-a或x>a;(2)平方法:两边平方去掉绝对值符号;(3)零点分区间法:含有两个或两个以上绝对值符号的不等式,可用零点分区间法脱去绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解;(4)几何法:利用绝对值的几何意义,画出数轴,将绝对值转化为数轴上两点的距离求解;(5)数形结合法:在直角坐标系中作出不等式两边所对应的两个函数的图象,利用函数图象求解.
对点训练[2021·全国甲卷]已知函数f(x)=|x-2|,g(x)=|2x+3|-|2x-1|.(1)画出y=f(x)和y=g(x)的图象;(2)若f(x+a)≥g(x),求a的取值范围.
考点三 与绝对值不等式有关的恒成立问题
考点三 与绝对值不等式有关的恒成立问题——弄清绝对值的几何意义定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.
归纳总结解决不等式恒成立、能成立、恰成立问题的策略
对点训练[2021·全国乙卷]已知函数f(x)=|x-a|+|x+3|.(1)当a=1时,求不等式f(x)≥6的解集;(2)若f(x)>-a,求a的取值范围.
统考版2024高考数学二轮专题复习第三篇关键能力为重专题七鸭系列第2讲不等式选讲课件文: 这是一份统考版2024高考数学二轮专题复习第三篇关键能力为重专题七鸭系列第2讲不等式选讲课件文,共25页。PPT课件主要包含了考点一,考点二,考点三,考点一不等式的证明等内容,欢迎下载使用。
(统考版)2023高考数学二轮专题复习 第三篇 关键能力为重(研重点 保大分)专题五 解析几何 第1讲 直线与圆课件: 这是一份(统考版)2023高考数学二轮专题复习 第三篇 关键能力为重(研重点 保大分)专题五 解析几何 第1讲 直线与圆课件,共33页。PPT课件主要包含了考点一,考点二,考点三,答案C,答案B,答案D,答案A等内容,欢迎下载使用。
(统考版)2023高考数学二轮专题复习 第三篇 关键能力为重(研重点 保大分)专题七 选考系列 第1讲 坐标系与参数方程课件: 这是一份(统考版)2023高考数学二轮专题复习 第三篇 关键能力为重(研重点 保大分)专题七 选考系列 第1讲 坐标系与参数方程课件,共28页。PPT课件主要包含了考点一,考点二,考点三等内容,欢迎下载使用。